期刊文献+

K次余数补数函数均值的渐进公式 被引量:3

On the Additive K-th Power Part Residue Function of Asymptotic Formula
下载PDF
导出
摘要 应美籍罗马尼亚数论专家F.Smarandache教授的要求,研究类似于Smarandache补数函数的性质.利用初等方法和解析方法,获得了本文定义的K次减法补数均值性质及渐进公式,发展了F.Smarandache教授在《Only Problems,Not solutions》一书中相关问题的研究工作. On the american nationality romania theory of numbers expert professor F. Smarandache request, the research is similar in smarandache makes up the several letters number the nature, method:uses the primary method and the analysis method. Finally: obtained this article to define makes up the number average value nature and the asymptotic formula in the coca K power of exponent. Conclusion: has developed professor F. Smarandache in "Only Problems, Not Solutions" in a book 29 question research works.
作者 黄炜 刘秀红
出处 《河南科学》 2009年第12期1497-1499,共3页 Henan Science
基金 国家自然科学基金项目(10271093) 陕西省自然科学基金项目资助(SJ08A28) 宝鸡职业技术学院重点科研基金资助项目(ZK0986)
关键词 K次减法补数 均值 渐近公式 additive K-th power part residue function mean value asymptotic formula
  • 相关文献

参考文献8

二级参考文献16

  • 1朱伟义.关于整数n的k次补数[J].数学学报(中文版),2005,48(4):817-820. 被引量:14
  • 2Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993. 被引量:1
  • 3Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69. 被引量:1
  • 4Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46. 被引量:1
  • 5Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158. 被引量:1
  • 6Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16. 被引量:1
  • 7Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976. 被引量:1
  • 8Pan Chengdong and Pan Chengbiao.The esementary number theory.Beijing University Press:Beijing.2003. 被引量:1
  • 9Smarandache F., Only problems, Not solutions, Chicago: Xiquan Publ. House, 1993, 27. 被引量:1
  • 10Hardy G. H., Ramanujan S., The normal number of prime factors of a number n, Quart. J. Math., 1917, 48:76-92. 被引量:1

共引文献39

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部