摘要
设n是正整数,S(n)是n的立方幂补数,σ(n)表示n的除数和函数.探讨了∑n≤xσ(S(n))3n的渐近性质,用解析方法得到了一个渐近公式,进一步解决了F.Smarandache教授提出的第28个问题,补充了相关文献的结论.
Let n be a positive integer, S(n) its cubic complement, σ(n) a divisor sum function of n. The asymptotic properties of ∑n≤x (S(n))σ/n^3 were discussed, an asymptotic formula was obtained by using analytical method and the 28-th problem presented by professor F. Smarandache was further solved, so that related conclusions given by some literatures were supplemented.
出处
《兰州理工大学学报》
CAS
北大核心
2006年第4期153-154,共2页
Journal of Lanzhou University of Technology
关键词
立方幂补数
除数和函数
均值
渐近公式
cubic complement
divisor sum function
mean value
asymptotic formula