期刊文献+

分数布朗运动环境下的幂期权定价 被引量:8

Power Option Pricing in a Fractional Brownian Motion
下载PDF
导出
摘要 在等价鞅测度下,研究标的资产价格服从几何分数布朗运动的幂期权看涨、看跌定价公式及其平价公式.并与基于标准布朗运动的幂期权定价公式进行比较分析,进一步论证布朗运动只是分数布朗运动的一种特例,可基于分数布朗运动对原有的期权定价模型进行推广. By applying equivalent martingale measure. We derive the pricing iormuias for power option and call-put parity when underlying assets are driven by Fractional Brownian Motion. The conciusion will be compared with the classical results based on standard Brownian Motion. We point out that standard Brownian Motion is an especial case of Fractional Brownian Motion. The quondam option pricing model can be generalized.
出处 《大学数学》 2009年第5期69-72,共4页 College Mathematics
关键词 分数布朗运动 幂期权 BLACK-SCHOLES fractional Brownian motion power option Black-Scholes formula
  • 相关文献

参考文献3

二级参考文献15

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Ducan T E,Hu Y,Pasik-Ducan B.Stochastic calculus for fractinal Brownian motion[J].SIAM J Control Optim,2000,38:582-612. 被引量:1
  • 3Hu Y,Oksendal B.Fractional white noise calculus and application to finance[J].Inf Dim Anal Quantum Probab Rel Top,2003,6:1-32. 被引量:1
  • 4Ciprian Necula.Option pricing in a fractional brownian motion enviroment[R/L].Preprint,Academy of Economic Studies Bucharest,Romania,www.dofin.ase.ro/. 被引量:1
  • 5Lin S J.Stochastic analysis of fractional Brownian motion,fractional noises and application[J].SIAM Review,1995,10:422-437. 被引量:1
  • 6陈松男.金融工程学[M].上海:复旦大学出版社,2000.151-161. 被引量:2
  • 7Oksendal O. A Short Introduction to Mathematical Finance[M]. Preprints, Dept of Mathematics, University of Oslo, Norway. 被引量:1
  • 8Ross S M. An Elementary Introduction to Mathematical Finance, (second ed. )[M]. Cambridge University Press,2003. 被引量:1
  • 9Hull J C. Options, Futures, and Other Derivatives, (第4版)[M].北京:清华大学出版社,2001. 被引量:1
  • 10Ducan T E Hu, Y Pasik-Ducan B.Stochastic calculus for fractinal Brownian motion[J].I.SIAMJ.Control Optim.2000,38:582-612. 被引量:1

共引文献45

同被引文献63

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部