期刊文献+

标的资产价格服从分数布朗运动的几种新型期权定价 被引量:13

The Pricing Formulas of Exotic Options in a Fractional Brownian Motion
原文传递
导出
摘要 在等价鞅测度下,研究标的资产价格服从分数布朗运动的几种新型股票期权定价公式——n次幂期权、(幂型)上封顶及下保底型欧式看涨期权.并与基于标准布朗运动的期权定价公式进行比较分析,进一步论证布朗运动只是分数布朗运动的一种特例,可基于分数布朗运动对原有的期权定价模型进行推广. By applying equivalent martingale measure, the purpose of this paper is to obtain pricing formulas for some exotic options including power option, capped option, if the underlying is driven by a Fractional Brownian Motion. We will compare our results with the classical results based on standard Brownian Motion. And we conclude that standard Brownian Motion is an especial case of Fractional Brownian Motion. Then the classical pricing model of option can be generalized, which is based on Fractional Brownian Motion.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第15期54-59,共6页 Mathematics in Practice and Theory
基金 中国矿业大学青年科研基金(2007A029)
关键词 分数布朗运动 Black—Scholes公式 新型期权 fractional brownian motion black-scholes formula exotic option
  • 相关文献

参考文献5

二级参考文献14

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Ducan T E,Hu Y,Pasik-Ducan B.Stochastic calculus for fractinal Brownian motion[J].SIAM J Control Optim,2000,38:582-612. 被引量:1
  • 3Hu Y,Oksendal B.Fractional white noise calculus and application to finance[J].Inf Dim Anal Quantum Probab Rel Top,2003,6:1-32. 被引量:1
  • 4Ciprian Necula.Option pricing in a fractional brownian motion enviroment[R/L].Preprint,Academy of Economic Studies Bucharest,Romania,www.dofin.ase.ro/. 被引量:1
  • 5Lin S J.Stochastic analysis of fractional Brownian motion,fractional noises and application[J].SIAM Review,1995,10:422-437. 被引量:1
  • 6陈松男.金融工程学[M].上海:复旦大学出版社,2000.151-161. 被引量:2
  • 7Oksendal O. A Short Introduction to Mathematical Finance[M]. Preprints, Dept of Mathematics, University of Oslo, Norway. 被引量:1
  • 8Ross S M. An Elementary Introduction to Mathematical Finance, (second ed. )[M]. Cambridge University Press,2003. 被引量:1
  • 9Hull J C. Options, Futures, and Other Derivatives, (第4版)[M].北京:清华大学出版社,2001. 被引量:1
  • 10Ducan, T.E., Y. Hu and B. Pasik-Ducan, Stochastic calculus for fractinal Brownian motion, I. SIAMJ. Control Optim.,38(2000), 582-612. 被引量:2

共引文献85

同被引文献141

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部