期刊文献+

多维分数次Black-Scholes模型中欧式未定权的定价 被引量:7

Pricing of European Contingent Claim in Multi-dimensional Fractional Black-Schloes Model
下载PDF
导出
摘要 讨论了具有任意Hurst参数的多维分数次Black-Scholes模型中欧式未定权益的定价,首先得到了未定权益在到期前任意时刻的分数次风险中性定价,然后求出了欧式未定权益在单资产多噪声、多资产单噪声、多资产多噪声等情形下的定价公式. We discussed the pricing of European contingent claim in Multi-dimensional Fractional BlackSchloes model with arbitrary Hurst parameter. First, we obtained the fractional risk neutral pricing formula of contingent claim at arbitrary time before the expiration time. Then, we obtained the pricing formulas of European contingent claim in singal asset and multi-noise, multi-asset and singal noise, multi-asset and multi-noise respectively.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期128-131,共4页 Journal of Hunan University:Natural Sciences
基金 高校博士点专项科研基金资助项目(20040542006) 湖南省青年骨干教师培养经费资助项目
关键词 分数次布朗运动 欧式未定权益 多维分数次Black-Seholes模型 factional Brownian motion european contingent claim multidimensional fractional black-sehloes model
  • 相关文献

参考文献8

  • 1PETER E E.Fractal market analysis[M].New York:Wiley,1994. 被引量:1
  • 2SIMONSEN I,SNEPPEN K.Anti-correlations in the nordic electricity spot Market[J].Preprint,Norwegian University of Science and Technology,2001,322(1):597-606. 被引量:1
  • 3DUCAN T E,HU Y B.Pasik-ducan stochastic calculus for fractinal Brownian motion[J].I SIAMJ Control Optim,2000,38:582-612. 被引量:1
  • 4HU Y,ΦKSENDAL B.Fractional white noise calculus and application to Finance[J].Inf Dim Anal Quantum Probab Rel Top,2003,6:1-32. 被引量:1
  • 5CHRISTIAN BENDER.An ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst Parameter[J].Stochastic Process Appl,2003,104:81-106. 被引量:1
  • 6ELLIOTT R J.VAN DER HOEK J.Ageneral fractional white noise theory and applications to finance[J].Mathematical Finance,2003,2(13):301-330. 被引量:1
  • 7BENDER C.An s-transform approach to integration with respect to a Fractional Brownian Motion[J].Bemnoulli,2003,9:955 -983. 被引量:1
  • 8刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50

二级参考文献5

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Ducan, T.E., Y. Hu and B. Pasik-Ducan, Stochastic calculus for fractinal Brownian motion, I. SIAMJ. Control Optim.,38(2000), 582-612. 被引量:2
  • 3Hu, Y. and B. Oksendal, Fractional white noise calculus and application to finance, Inf. Dim. Anal. Quantum Prob.Rel. Top., 6(2003), 1-32. 被引量:2
  • 4Lin, S.J., Stochastic analysis of fractional Brownian motion, fractional noises and application, SIAM Review,10(1995), 422-437. 被引量:1
  • 5Ciprian Necula, Option Pricing in a Fractional Brownian Motion Enviroment, Preprint, Academy of Economic Studies Bucharest, Romania, www.dofin.ase.ro/. 被引量:2

共引文献49

同被引文献44

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部