期刊文献+

改进投票策略的多类SVM及在故障诊断中应用 被引量:6

Multi-class SVM based on improved voting strategy and its application in fault diagnosis
下载PDF
导出
摘要 针对一对一(OVO)分解法,提出了一种改进的投票(MWV)策略,解决了传统策略中的不可分区域问题。首先,由训练iω类和ωj(j≠i,j=1,…,n)类而得到的SVM决策函数;再对iω类定义了一个取值在0~1之间的调节函数,并使改进的得票值等于传统得票值加上调节函数。最后,根据改进的得票值进行分类决策。对于可分区域的样本,改进MWV策略的分类结果与传统策略完全相同;对于不可分区域的数据,由调节函数的值决定。将所提法应用于齿轮传动箱故障诊断实例并与传统得票策略诊断进行了对比,实验结果验证了所提方法的上述优越性。 An improved max-wins-voting (MWV) strategy for one-versus-one (OVO) classification is developed and the unclassifiable regions existing in conventional one are resolved. Firstly, using the decision functions obtained by training the SVM for classes wi and ωj(j≠i,j=1,…,n), for class wi, a novel tuning function is defined in the range of 0-1. Secondly, the improved voting value for class wi equals to the traditional voting value plus the tuning function. Finally, a classification decision is made according to the improved voting value. For the data in the classifiable regions, the classification results using improved MWV strategy are the same as that using the traditional one. Whereas, the data in the unclassifiable region are determined by the tuning func- tion. The comparison is done with experimental data in the application of fault diagnosis for gearbox. Experimental results demonstrate the superiority of the presented strategy.
作者 吴德会
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期982-987,共6页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(50705039)
关键词 模式识别 多类支持向量机 投票法 故障诊断 一对一分解 pattern recognition multi-class support vector machines max-wins-voting fault diagnosis,one-versus-one decomposition
  • 相关文献

参考文献12

  • 1Vapnik V N. The nature of statistical learning theory[M]. New York : Springer-Verlag , 1995. 被引量:1
  • 2Yang Xulei. A weighted support vector machine for data classification[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(5): 961 - 976. 被引量:1
  • 3Li Huaqing, Qi Feihu, Wang Shaoyu. A comparison of methods for multi-class support vector machines[C]//Computational Science and Its Applications-ICCSA, 2005:1140 - 1148. 被引量:1
  • 4Ctammer K, Singer Y. On the learnability and design of output codes for multiclass problems[C]//Proc, of the thirteenth Annual Conference on Computational Learning Theory San Franaieco: Morgan Kaufrnann, 2000:35 - 46. 被引量:1
  • 5Zhang Runxuan, Huang Guangbin, Sundararajan Narasimhan, et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis [J]. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2007, 4(3): 485-494. 被引量:1
  • 6Rifkin R, Clautau A. In defense of one vs-all classification[J]. Journal of Machine Learning Research, 2004, (5): 101 - 141. 被引量:1
  • 7Cheong Sungmoon, Oh Sang Hoon and Lee Soo-Young. Support Vector Machines with Binary Tree Architecture for Muhi-Class Classification[J]. Neural Information Processing-Letters and Reviews, 2004, 2(3):47-51. 被引量:1
  • 8Xu Yun. Support vector machines: A recent method for classification in chemometrics [J]. Critical Reviews in Analytical Chemistry, 2006, 36(3-4): 177-188. 被引量:1
  • 9苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 10Abe S, Inoue T. Fuzzy support vector machines for multiclass prohlems[C]// European Symposium on Artificial Neural Networks, Bruges, Belgium, 2002 : 113 - 118. 被引量:1

二级参考文献16

  • 1Weston J, Watkins C. Support vector machines for multi class pattern recognition[C]//Proceedings ofthe 7^th European Symposium on Artificial Neural Networks. Bruges, Belgium: [s. n.], 1999: 219-224. 被引量:1
  • 2Friedman J H. Another apporoach to polychotomous classification [R]. Stanford University, Department of Statistics, 1996. 被引量:1
  • 3Krebel U. Pairwise classification and support vector machines [M]. Cambridge, USA: The MIT Press, 1999:255-268. 被引量:1
  • 4Weston J, Watkins C. Multi-class support vector machines[R]. CSD-TR 98-04, Royal Holloway, University of London, 1998. 被引量:1
  • 5Rifkin R, Clautau A. In defense of one vs all classification [J]. Journal of Machine Learning Research ,2004, (5) : 101-141. 被引量:1
  • 6Debnath R, Takahide N, Takahashi H. A decision based on one against one method for multi-class support vector machine[J]. Pattern Anal Applic,2004,7: 164-175. 被引量:1
  • 7Moreira M, Mayoraz E. Improving pairwise coupling classification with error correcting classifiers[C]//Proeeeding of Tenth European Conference on Machine Learning. Germany:Springer Berlin/Heidelberg, 1998,1398 : 160-171. 被引量:1
  • 8Cutzu F. How to do multi-way classification with two-way classifiers [C]// ICANN/ICONIP 2003.Germany:Springer Berlin/Heidelberg, 2003:375-382. 被引量:1
  • 9Hsu C W, I.in C J. A comparison of methods for multi-class support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2):415-425. 被引量:1
  • 10Platt J. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods: support vector learning[M]. Cambridge, USA:The MIT Press, 1999:185-208. 被引量:1

共引文献62

同被引文献70

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部