期刊文献+

基于FTA与LS-SVM的航空部件危险性分级方法 被引量:3

Risk ranking method for aeronautic components based on FTA and LS-SVM
下载PDF
导出
摘要 针对目前危险性分级方法的不足,提出了基于故障树分析(fault tree analysis,FTA)与最小支持向量机(least square support vector machine,LS-SVM)的航空部件危险性定量分级方法。首先通过布尔代数法对FTA进行逻辑描述,采用概率重要度表示部件失效的后果严重程度,在此基础上通过LS-SVM对航空部件的危险性进行分级。实例证明,该方法能够准确地反映航空部件对飞行安全的影响。 Aiming at the deficiency of existing ranking methods on security risk, a method based on fault tree analysis (FTA) and least square support vector machine (LS-SVM) is proposed, which can be used in quantitative safety ranking of the components for aircraft. The fault tree is denoted by Boolean formula firstly, and the effect parameter for failure is acquired according to probability importance degree. And then the hazard ranking of components for aircraft is calculated based on LS-SVM. Its application shows that the proposed method can adequately validate the effect of aeronautic components on flight security.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2445-2448,共4页 Systems Engineering and Electronics
基金 '十二五'国防预研基金资助课题
关键词 危险性分级 故障树 最小支持向量机 航空部件 risk ranking fault tree (FTA) least square support vector machine (LS-SVM) aeronautic component
  • 相关文献

参考文献15

  • 1Catherine N B, Vanessa F. Nextgen flight security risk assessment information concept[C] //Proc. of the Digital Avionics Systems, 2009,6A(4) : 1 - 10. 被引量:1
  • 2Garvey P R, Lansdowne Z F. Risk matrix: an approach for identifying, assessing, and ranking program risks [J]. Air Force Journal of Logistics, 1998,22(1) : 16 - 23. 被引量:1
  • 3Wang M H. A novel extension neural network for power transformer fault diagnosis [J]. IEEE Proceedings Generation, Transmission and Distribution, 2003,150(6) :669 - 685. 被引量:1
  • 4Li Jiawen Li Congxin.Information criterion based fast PCA adaptive algorithm[J].Journal of Systems Engineering and Electronics,2007,18(2):377-384. 被引量:3
  • 5Gao M, Cui B. Robust exponential stability of interval Cohen Grossberg neural networks with time-varying delays[J]. Chaos Solitons and Fractals ,2009,40(14):1914 - 1928. 被引量:1
  • 6Wang L, Li S, Tian F Y, et al. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing[J]. IEEE Trans. on System, Man, and Cybernetics--Part B~ Cybernetics, 2004, 34 ( 5 ): 2119 - 2125. 被引量:1
  • 7Wang L P, Shi H X. Noisy chaotic neural networks for combinatorial optimization[J]. Studies in Computational Intelligence, 2007,63:467- 487. 被引量:1
  • 8Latif-Shabgahi G, Tajarrod F. A new approach for the construction of fault trees from system simulink[C]///Proc, of the Availability, Reliability and Security ,2009: 712 - 717. 被引量:1
  • 9Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995. 被引量:1
  • 10吴德会.改进投票策略的多类SVM及在故障诊断中应用[J].系统工程与电子技术,2009,31(4):982-987. 被引量:6

二级参考文献33

  • 1胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 2苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 3廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 4Vapnik V N. The nature of statistical learning theory[M]. New York : Springer-Verlag , 1995. 被引量:1
  • 5Yang Xulei. A weighted support vector machine for data classification[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(5): 961 - 976. 被引量:1
  • 6Li Huaqing, Qi Feihu, Wang Shaoyu. A comparison of methods for multi-class support vector machines[C]//Computational Science and Its Applications-ICCSA, 2005:1140 - 1148. 被引量:1
  • 7Ctammer K, Singer Y. On the learnability and design of output codes for multiclass problems[C]//Proc, of the thirteenth Annual Conference on Computational Learning Theory San Franaieco: Morgan Kaufrnann, 2000:35 - 46. 被引量:1
  • 8Zhang Runxuan, Huang Guangbin, Sundararajan Narasimhan, et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis [J]. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2007, 4(3): 485-494. 被引量:1
  • 9Rifkin R, Clautau A. In defense of one vs-all classification[J]. Journal of Machine Learning Research, 2004, (5): 101 - 141. 被引量:1
  • 10Cheong Sungmoon, Oh Sang Hoon and Lee Soo-Young. Support Vector Machines with Binary Tree Architecture for Muhi-Class Classification[J]. Neural Information Processing-Letters and Reviews, 2004, 2(3):47-51. 被引量:1

共引文献19

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部