期刊文献+

基于支持向量机的交通视频人车识别研究 被引量:10

Recognition of Vehicle and Pedestrian in Traffic Video Based on SVM
下载PDF
导出
摘要 提出一种静止摄像机条件下车辆和行人的支持向量机(SVM)识别方法。首先根据背景差分法对监控视频中的运动目标进行检测,提取出运动目标的基本轮廓,然后利用数学形态学方法对目标进一步检测处理。用星形向量表示法对运动目标提取8个特征,以及高度、宽度和高宽比作为另外3个特征,通过构造SVM分类器,实现了基于SVM的图像分类和识别。实验结果表明,该方法能够在视频监控中快速准确地对运动的车辆和行人进行检测和分类,平均识别率达到96.97%。 In this paper, an approach based on SVM to recognize the moving vehicles and pedestrian with a static camera is presented. Firstly, the moving object in the video can be detected by background subtraction, and their basic outline is extracted. Then, the target by mathematical morphology is given. Eight features of the moving object with center radiation are picked up, and height, width, aspect ratio as the other three characteristics. Image classification and recognition based on SVM are achieved by constructing the SVM classifier. The experimental results show that the pedestrians and vehicles are detected and classified accurately in the surveillance video, and the average recognition rate is 96.97%.
出处 《电视技术》 北大核心 2011年第15期1-3,15,共4页 Video Engineering
关键词 支持向量机 目标检测 背景差分 特征提取 目标识别 SVM object detection background subtraction feature extraction object recognition
  • 相关文献

参考文献10

二级参考文献33

共引文献48

同被引文献86

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部