期刊文献+

基于推广能力测度的多类SVDD模式识别方法 被引量:20

Multi-Class Support Vector Domain Description for Pattern Recognition Based on a Measure of Expansibility
下载PDF
导出
摘要 经典的基于距离测度的SVDD(Support Vector Domain Description)方法在解决两类(多类)识别问题时具有误判率较高、识别率低于普通二类SVC分类器等缺点.本文在分析其原因的基础上,提出了一种更能反映样本与类别本质关系的推广能力测度,并由此提出了具有多层结构的多类SVDD模式识别方法.对实测雷达一维距离像数据的测试表明,该方法在保留了经典SVDD识别器算法复杂程度低、扩充性强、对训练样本数据规模上要求低等优点的同时,有效地降低了误判率,识别率已接近甚至达到二类SVC的水平. Classic SVDD classifiers, which use distance measures, have lower recognition rate than normal two-class SVM classifiers. After analyzing the causes, a new measure is proposed, which can represent the more essential relationship between sampies and categories.And then,a multi-level SVDD is proposed. The experiment on real one-dimensional range profiles data shows that,the multi-level SVDD reserves the lower complexity,higher expansibility and fewer requirements to sample size,ERs are reduced effectively, CR is increased even to the level of two-class SVM classifiers.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第3期464-469,共6页 Acta Electronica Sinica
关键词 模式识别 SVDD 多层结构 多分类算法 pattern recognition SVDD mulfi-level architecture multi-class classification
  • 相关文献

参考文献8

二级参考文献33

共引文献186

同被引文献166

引证文献20

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部