期刊文献+

基于支持向量机的供应链伙伴企业选择方法的研究 被引量:10

Research of partner enterprise selection in supply chain management based on support vector machine
下载PDF
导出
摘要 为了克服传统的机器学习方法在供应链管理领域应用存在的局限性,介绍了一种新的支持向量机的机器学习算法。以企业为背景,运用支持向量机算法来解决多类分类问题和函数回归问题。通过在某企业供应链伙伴选择中的实际应用,并与用神经元网络训练得出的结果进行对比,证明这种支持向量机的机器学习算法,不仅具有较高的训练效率,而且有更高的精确度。 To overcome the limitation of the traditional machine learning algorithms in Supply Chain (SC) field, a new machine-learning algorithm of Support Vector Machine(SVM) was proposed. The algorithm differed from those traditional ones in as neural networks. It could resolve the problem of Partner Enterprise Selection in SC Management more efficiently. In order to show its superiority, a real training experiment based on the data from a manufacture Enterprise was discussed in detail. Compared with the results derived from neural networks, the experimental results show that SVM not only improves the training efficiency, but also possesses higher accuracy.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2004年第7期796-800,共5页 Computer Integrated Manufacturing Systems
关键词 供应链 支持向量机 统计学习理论 伙伴企业 supply chain support vector machine statistical learning theory partner enterprise
  • 相关文献

参考文献11

  • 1VAPNIK V N. The nature of statistical learning theory[M].NewYork :Springer , 1995. 被引量:1
  • 2VAPNIK V N. Estimation of dependencies based on empirical data[M]. Berlin: Springer- Verlag, 1982. 被引量:1
  • 3BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) :121-167. 被引量:1
  • 4KREBEL U. Pairwise classification and support vector machines[M]. Cambridge, 1999. 被引量:1
  • 5WESTON J, WATKINS C. Multi-class support vector machines[R]. England:Royal Holloway Univ. of London,1998. 被引量:1
  • 6SCHOLKOPF, SMOLA B A,et al. New support vector algorithms[J]. Neural Computation, 2000, (12): 1207 - 1245. 被引量:1
  • 7CHANG Chihchung,LIN Chihjen. LIBSVM:a library for support vector machines[EB/OL]. http://www. csie. ntu. edu.tw/~cjlin/libsvm,2001- 12-04. 被引量:1
  • 8VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 9MANGASARIAN O. Arbitrary - norm separating plane[R].Madison, Wisconsin, USA: University of Wisconsin, 1997. 被引量:1
  • 10MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003.. 被引量:46

二级参考文献1

共引文献227

同被引文献89

引证文献10

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部