期刊文献+

ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2

基于支撑域的单分类器和密度估计的本质关系(英文)
下载PDF
导出
摘要 One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 单类支持向量机和支持向量数据描述是两种流行的基于支撑域的单分类器。为揭示采用高斯核后他们与密度估计之间的关系,首先将基于支撑域的单分类器统一到密度估计的框架下;其次证明了基于支撑域的单分类器诱导的密度估计和真实密度一致,同时也能减小积分平方误差。最后通过人工数据集实验验证了上述关系。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(60603029) the Natural Science Foundation of Jiangsu Province(BK2007074) the Natural Science Foundation for Colleges and Universities in Jiangsu Province(06KJB520132)~~
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation 单类支持向量机 支持向量数据描述 核密度估计
  • 相关文献

参考文献1

  • 1David M.J. Tax,Robert P.W. Duin. Support Vector Data Description[J] 2004,Machine Learning(1):45~66 被引量:1

同被引文献8

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部