期刊文献+

基于最小风险的SVM及其在故障诊断中的应用 被引量:10

Minimum Risk Based SVM and Its Application to Fault Diagnosis
下载PDF
导出
摘要 结合两类错误分类造成损失不等这一故障诊断特点,提出了基于最小风险的SVM方法。进行了三个方面的研究:a.在Platt提出的样本后验概率基础上,给出了修正的分类面以及修正的后验概率估算方法,并分析了该方法的合理性;b.将最小风险决策与SVM输出的后验概率有机融合,使该方法对故障的诊断更加敏感,减小漏判概率;c.以电液伺服阀故障诊断为例,对样本数据经K-L变换后进行可视化研究,分类结果表明了该方法的可行性。 According to the characteristics that the losses to the diagnosed equipment from the two types of errors are different , a support vector machine (SVM) technique based on Bayes minimum risk is put forward. Three phases have been discussed in this paper: a.The algorithm is designed to revise the traditional optimal hyperplane and the Platt posterior probability on doubtful classification area, and analyzing the rationality of the algorithm. b. A new method which combines the Bayes decision with minimum risk and the revised posterior probability is put forward, the method is more sensitive to the fault diagnosis and decreases missing fault probability. c.A diagnosis example on electro-hydraulic servo-valve is taken. After K-L transformation, a research on the visualization is proceeded. The results prove the feasibility of the technique.
出处 《振动.测试与诊断》 EI CSCD 2006年第2期108-111,共4页 Journal of Vibration,Measurement & Diagnosis
基金 陕西省自然科学基金资助项目(编号:2004JC12)
关键词 最小风险 支持向量机 故障诊断 后验概率 电液伺服阀 minimum risk support vector machines fault diagnosis posterior probability electro-hydraulic servo-valve
  • 相关文献

参考文献20

  • 1Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines [C]//Proceedings of the International Joint Conference on Artificial Intelligence (IJCA199). Stockholm, Sweden:[s.n.], 1999. 被引量:1
  • 2Poyhonen S, Negrea M, Arkkio A, et al. Support vector classification for fault diagnostics of an electrical machine[C]//Proc, of Int. Conf. on Signal Processing (ICSP'02). Beijing: [s. n.], 2002 : 26-30. 被引量:1
  • 3肖健华,樊可清,吴今培,杨叔子.应用于故障诊断的SVM理论研究[J].振动.测试与诊断,2001,21(4):258-262. 被引量:31
  • 4Sollich P. Probabilistic methods for support vector machines [C]//Advances in Neural Information System. Cambridge, MA: MIT Press, 2000:349-355. 被引量:1
  • 5Tresp V. A bayesian committee machine[J]. Neural Computation, 2000,12:2719-2741. 被引量:1
  • 6Platt J. Probabilities for support vector machines [C]//Advances in Large Marginclassifiers. Cambridge, MA: MIT Press,2000:61-74. 被引量:1
  • 7李金宗编著..模式识别导论[M].北京:高等教育出版社,1994:562.
  • 8Duda R, Hart P E. Pattern classification and scene analysis[M]. New York: John Wiley & Sons, 1973. 被引量:1
  • 9Vapnik V N. Statistical learning theory [M]. New York: John Wiley & Sons, 1998. 被引量:1
  • 10Wahba G. Support vector machines, reproducing kernel Hilbert space and the randomized GACV[C]//Advances in Kernel Methods Support Vector Learning.Cambridge, MA:MIT Press,1999:69-88. 被引量:1

二级参考文献25

  • 1张乃尧 阎平凡.神经网络与模糊控制[M].清华大学出版社,1999.. 被引量:24
  • 2[1]Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines. In: Proceedings of the International Joint Conference on Artificial Intelligence. (IJCA199). Stockholm, Sweden, 1999 被引量:1
  • 3[2]Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998,2(2):121~167 被引量:1
  • 4[3]D Tax, Dick D D, Duin R P W. Support vector classifiers: a first look. ASCI97. Proc. Third Annual Conference of the Advanced School for Computing and Imaging. Heijen, the Netherlands,1997 被引量:1
  • 5[1]V N Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995 被引量:1
  • 6[2]R O Duda, P E Hart. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973 被引量:1
  • 7[3]H Bourlard, N Margan. A continuous speech recognition system embedding MLP into HMM. In: Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann Publishers, 1990. 186~193 被引量:1
  • 8[4]G Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In: Advances in Kernel Methods Support Vector Learning. Massachusetts: MIT Press, 1999. 69~88 被引量:1
  • 9[5]J C Platt. Probabilities for SV machines. In: Advances in Large Margin Classifiers. Massachusetts: MIT Press, 2000. 61~74 被引量:1
  • 10[6]V N Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998 被引量:1

共引文献40

同被引文献75

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部