期刊文献+

基于最大熵估计的支持向量机概率建模 被引量:12

Probabilistic Outputs for Support Vector Machines Based on the Maximum Entropy Estimation
下载PDF
导出
摘要 提出一种基于最大熵估计的支持向量机概率建模方法.针对传统的支持向量机方法不能提供后验概率的输出问题,从信息熵的角度采用最大熵估计方法,直接对支持向量机输出进行后验概率建模.实验结果表明,与同类算法相比,所提出的基于最大熵估计的概率建模方法具有优良的性能. A modelling method of probabilistic outputs for support vector machines (SVM) based on the maximum entropy estimation is proposed. To the problem that the standard SVM does not provide probabilities output, the probabilistic outputs for support vector machines is modeled based on the maximum entropy estimation. Experiment results show that the proposed method achieves the better classification effect and the better posterior probability distribution than other methods.
出处 《控制与决策》 EI CSCD 北大核心 2006年第7期767-770,共4页 Control and Decision
基金 国家自然科学基金项目(60273005) 中国博士后科学基金项目(2005038310) 湖北省自然科学基金项目(2004ABA043) 湖北省教育厅科学技术研究重点项目(D200612002)
关键词 支持向量机 概率建模 最大熵估计 Support vector machines Probability modeling Maximum entropy estimation
  • 相关文献

参考文献10

  • 1Wahba G. Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV[A].Advances in Kernel Methods Support Vector Learning[C]. Massachusetts:MIT Press, 1999: 69-88. 被引量:1
  • 2Platt J C. Probabilities for Support Vector Machines[A], Advances in Large Margin Classifiers[C].Massachusetts :MIT Press, 2000 : 61-74. 被引量:1
  • 3Sollich P. Bayesian Methods for Support Vector Machines:Evidence and Predictive Class Probabilities[J]. Machine Learning , 2002,46 : 21-52. 被引量:1
  • 4Kwok J T Y. Moderating the Outputs of Support Vector Machine Classifiers[J]. IEEE Trans on Neural Networks,1999,10(5) : 1018-1031. 被引量:1
  • 5Hastie T, Tibshirani R. Classification by Pairwise Coupling [J]. The Annals of Statistics, 1998, 26 (1) :451-471. 被引量:1
  • 6Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998. 被引量:1
  • 7张文生,王珏,戴国忠.支持向量机中引入后验概率的理论和方法研究[J].计算机研究与发展,2002,39(4):392-397. 被引量:8
  • 8Lin H T, Lin C J, Weng R C. A Note on Platt's Probabilistic Outputs for Support Vector Machines [R].National Taiwan University, Taibei, 2003. 被引量:1
  • 9张翔..支持向量机及其在医学图像分割中的应用[D].华中科技大学,2004:
  • 10Theodoridis S, Koutroumbas K. Pattern Recognition[M]. Amsterdam: Elsevier Press, 2003. 被引量:1

二级参考文献7

  • 1[1]V N Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995 被引量:1
  • 2[2]R O Duda, P E Hart. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973 被引量:1
  • 3[3]H Bourlard, N Margan. A continuous speech recognition system embedding MLP into HMM. In: Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann Publishers, 1990. 186~193 被引量:1
  • 4[4]G Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In: Advances in Kernel Methods Support Vector Learning. Massachusetts: MIT Press, 1999. 69~88 被引量:1
  • 5[5]J C Platt. Probabilities for SV machines. In: Advances in Large Margin Classifiers. Massachusetts: MIT Press, 2000. 61~74 被引量:1
  • 6[6]V N Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998 被引量:1
  • 7[7]G Wahba. Multivarite Function and Operator Estimation Based on Smoothing Splines and Reproducing Kernels. Reading, MA: Addison Wesley, 1992 被引量:1

共引文献7

同被引文献118

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部