期刊文献+

基于证据理论的多类分类支持向量机集成 被引量:29

Support Vector Machine Ensemble Based on Evidence Theory for Multi-Class Classification
下载PDF
导出
摘要 针对多类分类问题,研究支持向量机集成中的分类器组合架构与方法.分析已有的多类级和两类级支持向量机集成架构的不足后,提出两层的集成架构.在此基础上,研究基于证据理论的支持向量机度量层输出信息融合方法,针对一对多与一对一两种多类扩展策略,分别定义基本概率分配函数,并根据证据冲突程度采用不同的证据组合规则.在一对多策略下,采用经典的Dempster规则;在一对一策略下则提出一条新的规则,以组合冲突严重的证据.实验表明,两层架构优于多类级架构,证据理论方法能有效地利用两类支持向量机的度量层输出信息,取得了满意的结果. Ensemble learning has become a main research topic in the field of machine learning recently. By training and combining some accurate and diverse classifiers, ensemble learning provides a novel approach for improving the generalization performance of classification systems. Studied in this paper are the architectures and methods for combination of multiple classifiers in support vector machine (SVM) ensemble for multi-class classification. After analyzing the defects of the known architectures including multi-class-level SVM ensemble and binary-class-level SVM ensemble, a two-layer architecture is proposed to construct SVM ensemble. Then fusion methods of the measurement-level output information of SVMs are studied based on the evidence theory. Different basic probability assignment functions are defined respectively in terms of the used strategy for multi-class extension, i.e. one-against-all and one-against-one, and different evidence combination rules are adopted according to the degree of conflicts among evidence. In the case of one-against-all strategy, the classical Dempster's rule can be used while in the case of one- against-one strategy a new rule is proposed to combine the heavily conflicting evidence. The experimental results show that the two-layer architecture is better than the multi-class-level architecture. Moreover, the evidence theory based methods can effectively utilize the measurement-level output information of binary SVMs so as to gain satisfactory classification accuracies.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第4期571-578,共8页 Journal of Computer Research and Development
基金 国家“九七三”重点基础研究发展规划基金项目(2002cb312200) 国家“八六三”高技术研究发展计划基金项目(2002AA412010) 国家自然科学基金项目(60575036)
关键词 支持向量机 集成 分类器组合 多类分类 证据理论 support vector machine ensemble combination of multiple classifiers multi-class classification evidence theory
  • 相关文献

参考文献18

  • 1V Vapnik. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995 被引量:1
  • 2L Bottou, C Cortes, J Denker, et al. Comparison of classifier methods: A case study in handwriting digit recognition [C]. The 12th IAPR Int'l Conf on Pattern Recognition, Jerusalem, Israel, 1994 被引量:1
  • 3S Knerr, L Personnaz, G Dreyfus. Single-layer learning revisited : A stepwise procedure for building and training a neural network [C]. In: Neurocomputing: Algorithms, Architectures and Application, F68 of NATO ASI Series. Berlin: Springer, 1990. 41-50 被引量:1
  • 4H C Kim, S N Pang, H M He, et al. Constructing support vector machine ensemble [J]. Pattern Recognition, 2003, 36 (12) : 2757-2767 被引量:1
  • 5C W Hsu, C J Lin. A comparison of methods for multi-class support vector machines [J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425 被引量:1
  • 6L K Hansen, P Salamon. Neural network ensembles [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12 (10) : 993-1001 被引量:1
  • 7R E Schapire. The strength of weak learnability [J]. Machine Learning, 1990, 5(2): 197-227 被引量:1
  • 8L Xu, A Krzyzak, C Y Suen. Methods of combining multiple classifiers and their applications to handwriting recognition [J]. IEEE Trans on Systems, Man and Cybernetics, 1992, 27(3) : 418-435 被引量:1
  • 9张文生,王珏,戴国忠.支持向量机中引入后验概率的理论和方法研究[J].计算机研究与发展,2002,39(4):392-397. 被引量:8
  • 10C K Murphy. Combining belief functions when evidence conflicts [J]. Decisions Support Systems, 2000, 29(1) : 1-9 被引量:1

二级参考文献22

  • 1[1]Ronald R.Yager.On the dempster-shafer framework and new combination rules[J].Information Sciences,1987,41:93-137. 被引量:1
  • 2[2]G.Shafer.A mathematical theory of evidence[M].Princeton U.P.,Princeton,1976. 被引量:1
  • 3[3]A.P.Dempster.Upper and lower probabilities induced by a multi-valued mapping[J].Ann.Math.Statist.1967,38:325-339. 被引量:1
  • 4[1]V N Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995 被引量:1
  • 5[2]R O Duda, P E Hart. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973 被引量:1
  • 6[3]H Bourlard, N Margan. A continuous speech recognition system embedding MLP into HMM. In: Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann Publishers, 1990. 186~193 被引量:1
  • 7[4]G Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In: Advances in Kernel Methods Support Vector Learning. Massachusetts: MIT Press, 1999. 69~88 被引量:1
  • 8[5]J C Platt. Probabilities for SV machines. In: Advances in Large Margin Classifiers. Massachusetts: MIT Press, 2000. 61~74 被引量:1
  • 9[6]V N Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998 被引量:1
  • 10[7]G Wahba. Multivarite Function and Operator Estimation Based on Smoothing Splines and Reproducing Kernels. Reading, MA: Addison Wesley, 1992 被引量:1

共引文献464

同被引文献322

引证文献29

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部