期刊文献+

基于LS-SVM的多标签分类算法 被引量:6

A Multi-Label Classification Algorithm Based on LS-SVM
下载PDF
导出
摘要 多标签分类是指部分样本同时归属多个类别.基于数据分解的算法因训练速度快、性能良好而得到广泛的应用.本文采用一对一分解策略,将k标签数据集分解为k(k-1)/2个两类单标签和两类双标签的数据子集.对每一训练子集统一用LS-SVM模型建立子分类器,当出现双标签样本时将其函数值设为0,并确定适当的分类阈值.对情感、景象和酵母数据集的实验结果表明,本文算法的某些性能指标优于现有一些常用的多标签分类方法. A multi-label classification problem lies in that its samples may belong to multiple classes.Data decomposition algorithms are widely used because of its good performance.One versus one decomposition strategy is adopted in this paper,and this strategy decomposes a multi-label problem into several binary class single label or binary class double label classification sub-problems which can be solved independently.For each sub-problem,we build a sub-classifier using LS-SVM model and set the function value zero when the sample is double label,then determine a proper threshold.Experimental results show that our performance is superior to several existent multi-label classification algorithms with some evaluation criteria on three benchmark datasets Yeast,Scene and Emotion.
出处 《南京师范大学学报(工程技术版)》 CAS 2010年第2期68-73,共6页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(60875001)
关键词 LS-SVM 多标签分类 一对一分解 LS-SVM multi-label classification one versus one decomposition strategy
  • 相关文献

参考文献14

  • 1Elisseeff A,Weston J.A kernel method for multi-labelled classification[C] // Proceedings of Advances in Neural Information.New York:BlOwulf Technologies,2003:681-687. 被引量:1
  • 2Schapire R E,Singer Y.Boostexter; a boosting based system for text categorization[J].Machine Learning,2000,39(2/3):135-168. 被引量:1
  • 3Zhang M L,Zhou Z H.A k-nearest neighbor based algorithm for multi-label classification[C] // Proceedings of the IEEE International Conference on Granular Computing.Heidelberg;Springer Berlin,2004:718-721. 被引量:1
  • 4Zhu S H,Ji X,Xu W,et al.Multi-labelled classification using maximum entropy method[C] // Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development.Salvador; ACM,2004:274-281. 被引量:1
  • 5Trohidis K,Tsoumakas G,Kalliris G,et al.Multilabel classification of music into emotions[C] // Proceedings International Conference on Music Information Retrieval.Philadelphia; ISMIR,2008:325-330. 被引量:1
  • 6Tsoumakas G,Katakis I.Multi-label classification; an overview[J].International Journal of Data Warehousing and Mining,2007,3(3):1-13. 被引量:1
  • 7Li T,Zhang C L,Zhu S H.Empirical studies on multi-label classification[C] // Proceedings of IEEE International Conference on Tools with Artificial Intelligence.Washington DC; IEEE Computer Society,2006:86-92. 被引量:1
  • 8Wan S P,Xu J H.A multi-label classification algorithm based on triple class support vector machine[C] // Proceedings of IEEE International Conference on Wavelet Analysis and Pattern Recognition.Beijing; IEEE ICWAPR,2007:1 447-1 452. 被引量:1
  • 9Suykens J K.Least squares support vector machines for classification and nonlinear modeling[J].Neural Network World,2000,10:2948. 被引量:1
  • 10Pavlidis P,Weston J,Cai J,et al.Combining microarray expression data and phylogenetic profiles to learn functional categories using support vector machines[C] // Proceedings of Annual International Conference on Computational Molecular Biology.Columbia; Columia University,2001:242-248. 被引量:1

同被引文献68

  • 1吴高巍,陶卿,王珏.基于后验概率的支持向量机[J].计算机研究与发展,2005,42(2):196-202. 被引量:12
  • 2凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35
  • 3XIE W, MAMMADOV M, YEARWOOD J. Using links to aid web classi- fication[ J]. Computer and Information Science, 2007 ( 6 ) : 981-986. 被引量:1
  • 4ELISSEEFF A, WESTON J. A kernel method for multi-labeled classification [ C ]//Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada: MIT, 2001, 14(14) : 681-687. 被引量:1
  • 5ZHU S H, JI X, XU W. Multi-labelled classification using maximum entropy method [ C ]//Proceedings of the 28th Annum International ACM SIGIR Conference on Research and Development. New York, USA: ACM,2004:274-281. 被引量:1
  • 6OLIVEIRA E, CIARELLI P M, BADUE C. A comparison between a KNN based approach and a PNN algorithm for a multi-label classification problem [ J ]. Intelligent Systems Design and Applications, 2008,2 (8) :628-633. 被引量:1
  • 7TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[ J ]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13. 被引量:1
  • 8KREBERL U. Pairwise classification and support vector machines[ M]. Cambridge, MA:MIT Press, 1999. 被引量:1
  • 9HU L H, YU Z F, LIU Y F. An algorithm of decision-tree generating automatically based on classification[ C]//Proceedings of the 2009 Firsi lnternalional Workshop on Education Technolgy and Computer Sctence. Washington, DC, USA: IEEE Computer Society, 2009:823-827. 被引量:1
  • 10PETROVSK/Y hi. Paired comparisons method for solving multi-label learning problem[ C ]//Proceedings of the Sixth International Conference on Hybrid Intelligent Systems. New Zealand: Auckland, 2006:42-45. 被引量:1

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部