期刊文献+

一种融合无监督聚类的层次向量机多类分类方法

A MULTI-CLASSIFICATION METHOD FOR HIERARCHICAL SUPPORT VECTOR MACHINE COMBINING UNSUPERVISED CLUSTERING
下载PDF
导出
摘要 层次支持向量机(SVM)是多类分类方法应用中的研究热点。针对SVM的分类面仅由支持向量决定的理论,提出一种基于无监督聚类方法来预抽取支持向量,训练向量机;并分析现有多类分类方法所存在的弊端,基于综合考虑节点的类集合可分性,设计一种基于树分类器整体性能最优的SVM二叉树层次分类方法。实验表明,该方法对比传统一类对余类法和成对分类法在整体分类精度和训练时间上都有明显提高。 Hierachical support vector machine (SVM) is a study hotpoint in application of the multi-classification method. The main purpose of this paper is to propose a unsupervised clustering-based method to pre-extract the support vector for training the SVM in light of the theory that the classification facet of SVM is determined by support vector only. By analyzing the limitation existed in current multi-class classification methods, and taking into account comprehensively the separability of the class set of nodes, a hierarchical classification method of SVM binary tree based on tree classifier with optimized overall performance is designed. Experimental results indicate that comparing with traditional method of one versus rest(OVR) and the method of one versus one (OVO) , the new method has noticeable enhancement in overall classification precision and training time.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第12期226-228,共3页 Computer Applications and Software
关键词 支持向量机 多类分类 无监督聚类 二叉树 SVM Muhi-classification Unsupervised clustering Binary tree
  • 相关文献

参考文献5

二级参考文献31

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995. 被引量:1
  • 2Bahlmann C,Hassdonk B,Burkhardt H.On-line Handwriting Recog-nition with Support Vector Machines:A Kernel Approach[C].Ontario:Proc.of the 8th Int.Workshop on Frontiers in Handwriting Recognition,2002.49-54. 被引量:1
  • 3Jonsson K,Kittler J,Matas Y P.Support Vector Machines for Face Authentication[J].Journal of Image and Vision Computing,2002,20(2):369-375. 被引量:1
  • 4Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C].Proc.of the 10th European Conf.Machine Learning,1999.137-142. 被引量:1
  • 5Ma C,Randolph M A,Drish J.A Support Vector Machines-based Rejection Technique for Speech Recognition[C].Proceedings of IEEE Int.Conference on Acoustics,Speech,and Signal Processing,2001.381-384. 被引量:1
  • 6Weston J,Watkins C.Multi-class Support Vector Machines[C].Brussels:Proceedings of ESANN'99,1999.233-265. 被引量:1
  • 7Bottou L,Cortes C,Denker J,et al.Comparison of Classifier Met-hods:A Case Study in Handwriting Digit Recognition[C].Proc.of Int.Conf.Pattern Recognition,1994.77-87. 被引量:1
  • 8Krebel U.Pairwise Classification and Support Vector Machines[A].Scholkopf B,Burges C J C,Smola A J.Advances in Kernel Methods:Support Vector Learning[C].MA:MIT Press,1999.255-268. 被引量:1
  • 9Platt J C,Cristianini N,Shawe-Taylor J.Large Margin DAGs for Multiclass Classification[J].Advances in Neural Information Proces-sing Systems,2000,12(3):547-553. 被引量:1
  • 10Ditterich T G,Bakiri G.Solving Multiclass Learning Problem via Error-correcting Output Codes[J].Journal of Artificial Intelligence Research,1995,11(2):263-286. 被引量:1

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部