摘要
研究了具有功能性反应函数(x~α)/(1+βx~α+ωx^(2α))捕食者—食饵系统的定性行为.在这个系统中,当无捕食者时,食饵密度按照函数x(a-bx~α)变化.通过对系统的分析和构造李雅谱诺夫函数,分别得出在适当条件下系统非负平衡点的局部稳定性和全局稳定性,以及当正平衡不稳定时,系统在参数变化范围内存在唯一稳定的极限环.
Qualitative behavior for predator-prey systems with the functional response x^α/1+βx^α+wx^2α was studied. In this system, the prey density changed with the function x(a - bx^α) when there was not a predator. Through theoretical analysis and structuring Liapunov function, it was concluded that the system is partially stable or globally stable in suitable conditions and has a unique stable limit cycle within the change of the parameters if the positive equilibrium point is unstable.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第1期95-98,共4页
Journal of Lanzhou University(Natural Sciences)
基金
国家社会科学基金项目(04AJL007)
国家自然科学基金项目(30700100)