期刊文献+

一类食饵带传染病的食物链扩散模型的非常数正平衡态 被引量:1

Non-constant positive steady state of a diffusive food-chain model with disease in the prey
下载PDF
导出
摘要 讨论了一类食饵带有传染病的带Neumann齐次边界条件的反应扩散模型的正平衡态问题.给出了正平衡态解的先验估计及非常数正平衡态解的存在性和不存性及分歧. The non-constant positive steady state of a reaction-diffusion system with infected prey and homogeneous Neumann boundary conditions was discussed. A prior estimate of positive state was made. The non-existence of the non-constant positive steady state, the existence and bifurcation of the non-constant posi- tive steady state were also studied.
作者 吴建春
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期90-95,共6页 Journal of Lanzhou University(Natural Sciences)
基金 甘肃省教育厅科研项目(0801-02)
关键词 反应扩散系统 正常数解 非常数正平衡态 拓扑度 reaction-diffusion system positive constant solution non-constant positive steady state topological degree
  • 相关文献

参考文献2

二级参考文献13

共引文献5

同被引文献15

  • 1SCHLEY D, DONCASTER C P SLUCKIN T. Pop- ulation models of sperm-dependent parthenogene-s[J]. Journal of Theoretical Biology, 2004, 229(4)" 559-572. 被引量:1
  • 2WOHRMANN K, LOESCHCKE V, Population biolo- gy and evolution[M]. Berlin: Springer-Verlag 1984: 217-231. 被引量:1
  • 3RANKIN D J KOKKO H. Do males matter? The role of males in population dynamics[J]. Oikos 2007 116(2): 335-348. 被引量:1
  • 4KOKKO H HEUBEL K U, RANKIN D J. How popu- lation persist when asexuality requires sex: the spa- tial dynamics of coping with sperm parasites[J]. Pro- ceedings of the Royal Society B, 2008, 275(1 636): 817-825. 被引量:1
  • 5KITAMURA K, KASHIWAGI K, TAINAKA K I, et al. Asymmetrical effect of migration on a prey- predator model[J]. Physics Letters A, 2006, 357(3): 213-217. 被引量:1
  • 6AMARASEKARE P. Productivity dispersal and the coexistence of intraguild predators and prey[J]. Journal of Theoretical Biology 2006 243(1): 121-133. 被引量:1
  • 7AMENT I, SCHEU S, DROSSEL B. InflUence of spatial structure on the maintenance of sexual reproduction[J]. Journal of Theoretical Biology, 2008, 254(3): 520-528. 被引量:1
  • 8MATSUDA H, OGITA AT SASAKI A, et al. Sta- tistical mechanics of population: the lattice Lotka- Volterra model[J]. Progress of Theoretical Physics, 1992, 88(6)" 1 035-1049. 被引量:1
  • 9BOOTS M, SASAKI A. Parasite-driven extinction in spatially explicit host-parasite systems[J]. The American Naturalist, 2002, 159(6)" 706-713. 被引量:1
  • 10HIEBELER D. Competition between near and far dispersers in spatially structured habitats[J]. Theo- retical Population Biology, 2004, 66(3): 205-218. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部