摘要
利用微分方程定性理论研究一类具有常数放养的非线性密度制约和功能反应的捕-食模型,找出其平衡点存在的条件及局部稳定性态,同时给出正平衡点全局渐进稳定和存在唯一极限环的充分必要条件,并剖析其生物学意义.
Based on the qualitative theory of ordinary differential equations,it researched the predator-prey system with constan-trate grazing nonlinear density dependence and functional response,and found out the conditions for the existence of equilibrium point and the features of partial stability,simultaneously gave necessary and sufficient conditions for the gradually stability of overall situation and the existence of the unique positive equilibrium point,and its biological significance was explained.
出处
《湖北大学学报(自然科学版)》
CAS
2012年第2期218-221,共4页
Journal of Hubei University:Natural Science
基金
湖北省教育厅科学技术重点研究项目(D20113005)资助
关键词
非线性密度制约
功能反应
平衡点
极限环
nonlinear density dependence
functional response
balance
limit cycle