期刊文献+

肌电信号特征提取方法综述 被引量:30

Summary of EMG Feature Extraction
下载PDF
导出
摘要 肌电信号分析在肌肉的临床诊断、康复、仿生控制和工程应用等领域具有重要的研究价值,而特征提取是肌电信号分析的基础.文章总结回顾了现有肌电信号特征的提取方法,并将其归纳为四大类:时域分析方法、频域分析方法、时频分析方法和非线性动力学方法.在简单介绍各类特征提取方法的基础上,比较了各类方法的特点与优劣,并对其在肌电分析相关领域的应用前景进行了展望. Electromyography (EMG) signal analysis has great value in the fields of clinical diagnosis, rehabilitation, bionic control, engineering application and so on, while feature extraction is the basis of EMG signal analysis. After reviewing such methods that are used to extract the characteristics of EMG signals, the paper concluded four main kinds of methods: time-domain, frequency-domain, time-frequency and nonlinear dynamics analysis methods. Based on a brief introduction to above methods, the paper compares the advantages and disadvantages of each method and predicts their application prospects in the correlative fields of EMG analysis.
出处 《电子器件》 CAS 2007年第1期326-330,共5页 Chinese Journal of Electron Devices
基金 国家自然科学基金(60474054) 教育部新世纪优秀人才资助计划资助(NCET-04-0558)
关键词 肌电信号 特征提取 时频分析 非线性动力学 EMG feature extraction time-frequency analysis nonlinear dynamics
  • 相关文献

参考文献35

  • 1Deluca C.Physiology and Mathematics of Myoelectric Signals[J].IEEE Trans.Biomed.Eng,1979,26(3):313-325. 被引量:1
  • 2Cohen L.Time-Frequency Analysis:Theory and Applications[M].Prentice Hall,1995. 被引量:1
  • 3Stefan Karlsson,Jun Yu,Metin Akay.Time-Frequency Analysis of Myoelectric Signls during Dynamic Contraction:A Comparative Study[J].IEEE Trans.Biomed.Eng,2000,47(2):228-238. 被引量:1
  • 4Katsutoshi Kuribayashi,et al.A Discrimination System Using Neural Network for EMG-Controlled Prostheses-Integral Type of EMG Signal Processing[C]//Proc.Of the 1993 IEEE/RSJ Int.Conference on Intelligent Robots and Systems'93[Yokohama],1983,pp.1750-1755. 被引量:1
  • 5Chang W H,et al.Autoregressive Model to Muscle Force and Fatigue Analysis[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1991,13(1):481-482. 被引量:1
  • 6Graupe D,et al.Function Separation of EMG Signals via ARMA Identification Method for Prosthesis Control Purposes[C]//IEEETrans.Syst.Man.Cybern.1975,5:252-259. 被引量:1
  • 7Graupe G,et al.Multifunctional Prosthesis and OrthosisControl via Microcompuer Identification of Temporal Pattern Differences in Single Site Myoelectic Signals[J].J.Biorned.Eng,1982,4:17-22. 被引量:1
  • 8Graupe D,et al.Patient Controlled Electrical Stimulation via EMG Signature Discrimination for Providing Certain Paraplegics with Primitive Walking Functions[J].J Bioned Eng,1983,5:220-226. 被引量:1
  • 9王人成,黄昌华,李波,金德闻,张济川.基于BP神经网络的表面肌电信号模式分类的研究[J].中国医疗器械杂志,1998,22(2):63-66. 被引量:20
  • 10蔡华,王志中,张海虹,雷敏.多道前臂肌电信号集中参数模型系统的确定[J].生物医学工程学杂志,1999,16(1):57-62. 被引量:6

二级参考文献41

共引文献246

同被引文献284

引证文献30

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部