期刊文献+

非线性PCA在表面肌电信号特征提取中的应用 被引量:6

Nonlinear Principal Component Analysis for Feature Extraction of SEMG
下载PDF
导出
摘要 针对表面肌电信号的特点,提出了一种应用非线性主分量分析(PCA)提取表面肌电信号特征的新方法.该方法在表面肌电信号滤波的基础上,采用非线性PCA方法完成数据压缩,将多路表面肌电信号转换为一维的特征数据主元,并以主元曲线的形式输出特征提取结果.本文采用基于自组织神经网络的非线性PCA对手臂尺侧腕伸肌和尺侧腕屈肌的两路表面肌电信号进行主元提取,试验结果表明,四种手部运动模式(握拳、展拳、腕外旋、腕内旋)对应的表面肌电信号利用该方法处理后,得到的主元曲线具有很好的类区分性,依据所得主元曲线的形状特征可以有效地进行手部动作类别的识别. In connection with the character of Surface Electromyography signal (SEMG), a new method that uses nonlinear Principal Component Analysis (NLPCA) to extract feature from SEMG was proposed. After filtering SEMG, it utilizes NLPCA to achieve data compression, which transforms multi-way SEMG to one dimensional feature data saying principal component, and then,outputs the extraction in principal curve.NLPCA basing on auto-associative neural networks was utilized to extracted principal component from two-way SEMG, which derived from ulnar extensor muscle and ulnar flexor muscle of wrist respectively. Experimental results showed that, after processing SEMG of four hand motion patterns that including fist clenching, fist unfolding, wrist intorsion and wrist extortion with this method, principal curves with good character of category division were produced. According to the shape features of principal curves, motion of hand can be recognized efficiently.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第10期2164-2168,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(60474054) 教育部新世纪优秀人才(NCET-04-0558)支持项目
关键词 表面肌电信号 非线性主分量分析 自组织神经网络 特征提取 surface electromyography signal nonlinear principal component analysis auto-associative neural networks feature extraction
  • 相关文献

参考文献10

二级参考文献31

  • 1黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28
  • 2潘玉松,牛玉广,牛征,黄孝彬.基于子PCA模型的故障分离方法及其应用[J].华北电力大学学报(自然科学版),2005,32(3):32-35. 被引量:8
  • 3胡天培,王森章,刘国庆,徐正松,阿孜古丽.牙会甫,陈中伟,陈峥嵘.手臂残端再造“指”控制的电子假手研究[J].中国生物医学工程学报,1997,16(2):142-146. 被引量:11
  • 4[1]D Graupe, W K Cline. Function separation of EMG signals via ARMA identification methods for prosthesis control purposes[ J].IEEE Trans Syst Man Cybern, 1975,5(2):252- 259. 被引量:1
  • 5[2]M Unser, A Aldroubi. A Review of Wavelets in Biomedical Applications[ J]. Proceedigs of the IEEE, 1996,84(4): 626 - 638. 被引量:1
  • 6蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.. 被引量:34
  • 7Herberts P,Almstrom C,et al. Clinical application study of multi-functional prosthetic hands[J]. Bone Joint Surgery. 1978,60(4):552-560. 被引量:1
  • 8Tura A, Lamberti C, et al. Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering[J]. J Rehabil Res Dev,1998,35(1):14-26. 被引量:1
  • 9Ronager J,Christensen H. Power spectrum analysis of the EMG pattern in normal and diseased muscles[J]. J Neurol Sci, 1989,94(1-3):283-294. 被引量:1
  • 10Adel B,Karim A,J Cardoso et al. Blind Source Separation Technique Using second-Order Statistics[J].IEEE Trans on Signal Process,1997;45(2) :434~443. 被引量:1

共引文献27

同被引文献73

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部