期刊文献+

塑性碰撞机械振动系统的周期运动和分岔 被引量:4

PERIODIC MOTIONS AND BIFURCATIONS OF VIBRATORY SYSTEMS WITH PLASTIC IMPACTS REPEATED
下载PDF
导出
摘要 应用映射的分岔理论研究塑性碰撞机械振动系统特有的两类周期碰撞运动的存在性、分岔和碰撞映射的奇异性,分析两类周期碰撞运动的规律和转迁过程。塑性碰撞振动系统的Poincare映射具有分段不连续特性和擦边奇异性。塑性碰撞振动系统的部件在碰撞后呈现“粘贴”或“非粘贴”运动,导致该类系统的Poincare映射具有分段不连续性;碰撞部件的擦边接触导致系统的Poincare映射具有擦边奇异性。塑性碰撞振动系统Poincare映射的分段不连续特性和擦边奇异性导致该类系统的周期碰撞运动发生非常规分岔。描述分段不连续性和擦边接触奇异性对系统周期运动和全局分岔的影响,分析塑性碰撞振动系统混沌运动的形成与退出过程。 Vibratory systems with repeated impacts are considered. Dynamics of such systems, in inelastic impact cases, are studied with special attention to existence of two different types of periodic-impact motions, bifurcations and singularity by applying bifurcation theory of mapping. Regularity and transition of two types of periodic-impact motions are studied by use of a mapping derived from the equations of motion. The mapping of vibratory systems with repeated inelastic impacts is ofpiecewise property due to synchronous and non-synchronous motions of impact components immediately after the impact, and singularities caused by the grazing contact motions of impact components. The piecewise property and grazing singularity of Poincar6 mapping of such systems lead to non-standard bifurcations of periodic-impact motions. The influence of the piecewise property and singularities on global bifurcations and transitions to chaos is elucidated. The routes from periodic-impact motions to chaos are analyzed bv numerical analyses.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第10期10-18,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(10572055 50475109) 教育部科学技术研究(206151)资助项目。
关键词 振动 冲击 周期运动 Sliding分岔 Grazing分岔 Vibration, Impact, Periodic motion, Sliding bifurcation, Grazing bifurcation
  • 相关文献

参考文献23

  • 1SHAW S W,HOLMES P J.A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration,1983,90(1):129-155. 被引量:1
  • 2SHAW S W,HOLMES P J.Periodically forced linear oscillator with impacts:Chaos and long-period motions[J].Physical Review Letters,1983,51:894-857. 被引量:1
  • 3胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 4AIDANP(A)(A) J O,GUPTA B R.Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system[J].Journal of Sound and Vibration,1993,165(2):305-327. 被引量:1
  • 5金栋平,胡海岩.PERIODIC VIBRO-IMPACTS AND THEIR STABILITY OF A DUAL COMPONENT SYSTEM[J].Acta Mechanica Sinica,1997,13(4):366-376. 被引量:17
  • 6李群宏,陆启韶.碰振系统中的共存周期轨道[J].应用数学和力学,2003,24(3):234-244. 被引量:17
  • 7IVANOV A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].Journal of Sound and Vibration,1993,162(3):562-565. 被引量:1
  • 8HUH Y.Detection of grazing orbits and incident bifurcations of a forced continuous,piecewise-linear oscillator[J].Journal of Sound and Vibration,1994,187(3):485-493. 被引量:1
  • 9PETERKA F.Bifurcation and transition phenomena in an impact oscillator[J].Chaos,Solitons & Fractals,1996,7(10):1 635-1 647. 被引量:1
  • 10WHISTON G S.Singularities in vibro-impact dynamics[J].Journal of sound and vibration,1992,152(3):427-460. 被引量:1

二级参考文献69

共引文献173

同被引文献46

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部