期刊文献+

含间隙振动系统的周期运动和分岔 被引量:9

PERIODIC-IMPACT MOTIONS AND BIFURCATIONS OF THE VIBRATORY SYSTEM WITH A CLEARANCE
下载PDF
导出
摘要 研究了一类多自由度含间隙振动系统的动态响应,根据碰撞条件和由碰撞规律所确定的衔接条件求得系统的对称型周期碰撞运动及相关Poincare映射,讨论了该映射不动点的稳定性与局部分岔。用一个2自由度含间隙振动系统阐述了方法的有效性,分析了对称型周期碰撞运动稳定性、分岔、擦边奇异性和混沌形成过程。通过数值仿真研究了铁道车辆轮对的横向周期碰撞振动,分析了轮对对称型周期碰撞运动的叉式分岔和擦边映射奇异性。 A multi-degree-of-freedom vibratory system with a clearance is considered. The system consists of linear components, but the maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Such models play an important role in the studies of mechanical systems with clearances or gaps. Period one double-impact symmetrical motions are derived analytically according to the set of periodicity and matching conditions, and associated Poincare map is established. Stability and local bifurcations of the fixed point of double-impact symmetrical motion is analyzed by using the Poincare map. A two-degree-of-freedom vibratory system with a clearance is used as an example to demonstrate the validity of the analysis. Stability of periodic-impact motions, bifurcations, grazing singularities and routes to chaos are analyzed for the two-degree-of-freedom vibratory system with a clearance, in turn. Dynamics of the fundamental element in vehicle dynamics, a suspended, rolling wheelset is described. The diversity of dynamical behavior in this rolling wheelset with vibro-impact is demonstrated. Interesting features like both symmetric and asymmetric limit cycles, pitchfork bifurcation, period-doubling bifurcation, grazing boundary singularity and chaos, etc., are found.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第2期87-95,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(50475109 10572055)甘肃省自然科学基金(ZS-031-A25-007-Z)资助项目
关键词 间隙 冲击振动 周期运动 稳定性 分岔 Clearance Vibro-impactPeriodic motion Stability Bifurcation
  • 相关文献

参考文献19

  • 1AIDANP AA J O,GUPTA B R.Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system[J].Journal of Sound and Vibration,1993,165(2):305-327. 被引量:1
  • 2金栋平,胡海岩.PERIODIC VIBRO-IMPACTS AND THEIR STABILITY OF A DUAL COMPONENT SYSTEM[J].Acta Mechanica Sinica,1997,13(4):366-376. 被引量:17
  • 3IVANOV A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].Journal of Sound and Vibration,1993,162(3):562-565. 被引量:1
  • 4PETERKA F.Bifurcation and transition phenomena in an impact oscillator[J].Chaos,Solitons & Fractals,1996,7(10):1 635-1 647. 被引量:1
  • 5WHISTON G S.Singularities in vibro-impact dynamics[J].Journal of Sound and Vibration,1992,152(3):427-460. 被引量:1
  • 6HUH Y.Detection of grazing orbits and incident bifurcations of a forced continuous,piecewise-linear oscillator[J].Journal of Sound and Vibration,1994,187(3):485-493. 被引量:1
  • 7CHATTERJEE S,MALLIK A K.Bifurcations and chaos in autonomous self-excited oscillators with impact damping[J].Journal of Sound and Vibration,1996,191(4):539-562. 被引量:1
  • 8LUO G W,XIE J H.Bifurcations and chaos in a system with impacts[J].Physica D,2001,148:183-200. 被引量:1
  • 9LUO G W,XIE J H.Hopf bifurcations and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases[J].International Journal of Nonlinear Mechanics,2002,37(1):19-34. 被引量:1
  • 10HUH Y.Controlling chaos of a dynamical system with discontinuous vector field[J].Physica D,1997,106:1-8. 被引量:1

二级参考文献12

共引文献127

同被引文献80

  • 1李万祥,牛卫中.一类含间隙系统的分岔与混沌的形成过程[J].振动与冲击,2005,24(3):47-49. 被引量:35
  • 2胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 3罗冠炜,张艳龙,谢建华.多自由度含间隙振动系统周期运动的二重Hopf分岔[J].工程力学,2006,23(3):37-43. 被引量:6
  • 4Swiatoniowski A.Interdependence between rolling mill vibration and the plastic deformation process[J].Journal of Materials Processing Technology,1996,61(4):354-364. 被引量:1
  • 5Niziol J,Swiatoniowski A.Numerical analysis of the vertical vibrations of rolling mills and their negative effect on the sheet quality[J].Journal of Materials Processing Technology.2005,162:546-550. 被引量:1
  • 6Swiatoniowski A,Bar A.Parametrical excitement vibration in tandem mills mathematical model and its analysis[J].Journal of Materials Processing Technology,2003,134(2):2 14-224. 被引量:1
  • 7Younghae D,Sang D K,Phil S K.Stability of fixed points placed on the border in the piecewise linear systems[J].Chaos,Solitons and Fractals,2008,38(2):391-399. 被引量:1
  • 8Tamiya T,Furui K,Lida H,et al.Analysis of chattering phenomenon in cold rolling[J].In:ISIJ ed.Proceedings of the International Conference on Steel Rolling,Tokyo,1980,1191-1202. 被引量:1
  • 9SHAW S W,HOLMES P J.A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration,1983,90(1):129-155. 被引量:1
  • 10SHAW S W,HOLMES P J.Periodically forced linear oscillator with impacts:Chaos and long-period motions[J].Physical Review Letters,1983,51:894-857. 被引量:1

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部