摘要
以单自由度含双侧约束碰撞振动系统为研究对象,数值仿真了系统1-1-1周期运动经周期倍化分岔和Grazing分岔向混沌转迁的路径;给出了OGY控制方法的原理和步骤。利用混沌运动对参数微小扰动的敏感性和混沌轨道的遍历性质,选择嵌入混沌吸引子中的一个不稳定不动点作为控制目标,当系统状态访问目标不动点的微小邻域时,给系统参数施加微小扰动,把混沌控制到期望的目标轨道。仿真结果表明,在极短的时间内系统的混沌得到了抑制。
A single-degree-of-freedom vibrating system with two-sided constraints is considered. Routes from doubling-periodic bifurcation and Grazing bifurcation of periodic motion to chaotic motion are illustrated by numerical methods. The principle and procedure of the OGY method are introduced. Due to sensitivity to tiny perturbations and traversal properties of chaotic orbits, an unstable fixed point embedded in the chaotic attractor is chosen as the controlling target, and chaotic behavior is controlled to the desired orbit by applying tiny perturbation on a system parameter. The simulated results show that the chaotic motion is suppressed in a very short time period.
出处
《机械科学与技术》
CSCD
北大核心
2016年第4期531-534,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金项目(11462012
11362008)
甘肃省科技计划项目(148RJZA034)
甘肃省高等学校科研项目(2014A-046)资助
关键词
碰撞振动
分岔
混沌
控制
chaos, control, dynamics, single-degree-of-freedom, vibration