期刊文献+

含双侧约束碰撞振动系统的OGY混沌控制 被引量:12

Chaos Control of a Vibro-impact System with Two-sided Constraints Based on OGY Method
下载PDF
导出
摘要 以单自由度含双侧约束碰撞振动系统为研究对象,数值仿真了系统1-1-1周期运动经周期倍化分岔和Grazing分岔向混沌转迁的路径;给出了OGY控制方法的原理和步骤。利用混沌运动对参数微小扰动的敏感性和混沌轨道的遍历性质,选择嵌入混沌吸引子中的一个不稳定不动点作为控制目标,当系统状态访问目标不动点的微小邻域时,给系统参数施加微小扰动,把混沌控制到期望的目标轨道。仿真结果表明,在极短的时间内系统的混沌得到了抑制。 A single-degree-of-freedom vibrating system with two-sided constraints is considered. Routes from doubling-periodic bifurcation and Grazing bifurcation of periodic motion to chaotic motion are illustrated by numerical methods. The principle and procedure of the OGY method are introduced. Due to sensitivity to tiny perturbations and traversal properties of chaotic orbits, an unstable fixed point embedded in the chaotic attractor is chosen as the controlling target, and chaotic behavior is controlled to the desired orbit by applying tiny perturbation on a system parameter. The simulated results show that the chaotic motion is suppressed in a very short time period.
出处 《机械科学与技术》 CSCD 北大核心 2016年第4期531-534,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(11462012 11362008) 甘肃省科技计划项目(148RJZA034) 甘肃省高等学校科研项目(2014A-046)资助
关键词 碰撞振动 分岔 混沌 控制 chaos, control, dynamics, single-degree-of-freedom, vibration
  • 相关文献

参考文献15

  • 1Luo G W, Xie J H. Hopf bifurcation of a two-degree-of- freedom vibro-impact system [ J ]. Journal of Sound and Vibration, 1998,213 ( 3 ) : 391-348. 被引量:1
  • 2Yue Y, Xie J H. Lyapunov exponents and coexistence of attractors in vibro-impaet systems with symmetric two- sided rigid constraints[ J]. Physics Letters A, 2009,373 (23-24) :2041-2046. 被引量:1
  • 3Xu J Q, Li Q H, Wang N. Existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system [ J ]. Applied Mathematics and Computation, 2011,217(12) :5537-5546. 被引量:1
  • 4Wagg D J. Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[ J]. Chaos, Solitons & Fractals, 2004, 22(3) :541-548. 被引量:1
  • 5李群宏,陆启韶.一类双自由度碰振系统运动分析[J].力学学报,2001,33(6):776-786. 被引量:27
  • 6李万祥,边红丽,蒋湘云.含间隙弹性约束系统的Hopf分岔与混沌研究[J].机械科学与技术,2004,23(10):1212-1214. 被引量:5
  • 7Dankowicz H, Svahn F. On the stabilizability of near- grazing dynamics in impact oscillators [ J ]. International Journal of Robust and Nonlinear Control, 2007, 17 (15) : 1405-1429. 被引量:1
  • 8Misra S, Dankowicz H. Control of near-grazing dynamics and discontinuity-induced bifurcations in piecewise- smooth dynamical systems [ J ]. International Journal of Robust and Nonlinear Control, 2010, 20 (16): 1836-1851. 被引量:1
  • 9王亮,徐伟,赵锐,孙春艳,郭永峰.Tracking Desired Trajectory in a Vibro-Impact System Using Backstepping Design[J].Chinese Physics Letters,2009,26(10):50-52. 被引量:7
  • 10De Souza S L T, Caldas I L. Controlling chaotic orbits in mechanical systems with impacts[J]. Chaos, Solitons & Fractals, 2004,19( 1 ) : 171-178. 被引量:1

二级参考文献63

共引文献59

同被引文献75

引证文献12

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部