期刊文献+

一类双自由度碰振系统的亚谐周期运动存在性 被引量:5

THE EXISTENCE OF SUBHARMONIC PERIODIC MOTION IN A TWO-DEGREE-OF-FREEDOM VIBRO-IMPACT SYSTEM
下载PDF
导出
摘要 基于 Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n 的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi 矩阵的特征值可判断周期运动的稳定性及分岔. An undamped two-degree-of-freedom vibro-impact system with a harmonic excitation is studied based on the theoretical analysis by Poincar(?) map.A criterion for the existence of single impact period—1/ n motions is obtained,and the initial position of the subharmonic periodic motion can be determined.The stability and the bifurcation of periodic motions are studied by computing the characteristic values of the Jacobian matrix.A combination of analytical and numerical techniques is proposed in the study of periodic motions of vibro-impact systems.
出处 《动力学与控制学报》 2003年第1期29-34,共6页 Journal of Dynamics and Control
基金 国家自然科学基金重大资助项目(19990510和10172011).~~
关键词 碰撞系统 亚谐运动 POINCARÉ映射 稳定性 impact system subharmonic motion Poincarémap stability
  • 相关文献

参考文献12

  • 1[1]Hsu CS.An unraveling algorithm for global analysis of dynamical systems-an application of cell-to-cell mapping.J Appl Mech,1980,47:940~948 被引量:1
  • 2[2]Shaw SW,Homes PJ.A periodically forced impact oscillator with large dissipation.J Appl Mech,1983,50:849~857 被引量:1
  • 3[3]Shaw SW.The dynamics of a harmonically excited system having rigid amplitude constraints (Parts Ⅰ and Ⅱ).J Appl Mech,1985,52:453~464 被引量:1
  • 4[4]Whiston GS.Global dynamics of a vibro-impacting linear oscillator.J Sound and Vibration,1987,118(3):395~424 被引量:1
  • 5[5]Whiston GS.The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator.J Sound and Vibration,1987,115(2):303~319 被引量:1
  • 6[6]Nordmark AB.Non-periodic motion caused by grazing incidence in an impact oscillator.J Sound and Vibration,1991,145(2):279~297 被引量:1
  • 7[7]Nordmark AB.Effects due to low velocity in mechanical oscillators.Int J of Bifur and Choas,1992,2(3):597~605 被引量:1
  • 8[8]Nordmark AB.A universal limit mapping in grazing bifurcations.Phys Rev E,1997,55:266~270 被引量:1
  • 9[9]Ivanov AP.Stabilization of an impact oscillator near grazing incidence owing to resonance.J Sound and Vibration,1993,162(3):562~565 被引量:1
  • 10[10]Aidanpaa JO,Gupta RB.Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system.J Sound and Vibration,1993,165(2):305~327 被引量:1

同被引文献66

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部