Al–Ga–Sn, Al–Ga–In and Al–Ga–In–Sn alloys were prepared using arc melting technique. Their microstructures were investigated by X-ray diffraction and scanning electron microscopy with energy dispersed X-ray. Ba...Al–Ga–Sn, Al–Ga–In and Al–Ga–In–Sn alloys were prepared using arc melting technique. Their microstructures were investigated by X-ray diffraction and scanning electron microscopy with energy dispersed X-ray. Based on microstructure analysis, the phase constituents of alloys at Al grain boundaries were identified. The melting points of Al grain boundary phases were measured using differential scanning calorimeter.The reactivities of Al–water at different water temperatures indicate that liquid Al grain boundary phases promote Al–water reactions of alloys. The melting points of Al grain boundary phases affect the reaction temperatures of Al–water, leading to different reaction temperatures of alloys. The measured H2 generation rate and yields of alloys are related to the compositions of alloys. The theory of microgalvanic cell is used to explain the observed different H2 generation rates of alloys.展开更多
To understand the flow trace of semi-solid slurry in mold cavity, some thermocouples were inserted in mold cavity, and the reaction timing of thermocouples showed the arrival of fluid. The filling time and rate were e...To understand the flow trace of semi-solid slurry in mold cavity, some thermocouples were inserted in mold cavity, and the reaction timing of thermocouples showed the arrival of fluid. The filling time and rate were estimated by comparison between the experiment and calculation. The introduction of computer simulation technique based on ADSTEFAN was to predict injectionforming process and to prevent defects during trial manufacture of various parts. By comparing the formed appearance of parts in experiment and in simulation, and observing the relationship between internal defects inspected by X-ray or microscope and the flow field obtained in simulation, it was indicated that both have quite good agreement in simulation and experiment. Right predictions for cast defects resulted from mold rilling can be carried out and proper direction was also proposed. The realization of numerical visualization for filling process during semi-solid die-cast process will play an important role in optimizing technology plan.展开更多
The influence of two novel aging treatments, T6I6 (130 ℃, 80 min + 65 ℃, 240 h+130 ℃, 18 h) and high-temperature pre-precipitation(HTPP) aging (445 ℃, 30 min+120 ℃, 24 h) on the tensile properties, intergranular ...The influence of two novel aging treatments, T6I6 (130 ℃, 80 min + 65 ℃, 240 h+130 ℃, 18 h) and high-temperature pre-precipitation(HTPP) aging (445 ℃, 30 min+120 ℃, 24 h) on the tensile properties, intergranular corrosion, exfoliation corrosion behaviors and microstructures of 7075 Al alloy was studied, which were compared with the T6, T73 and RRA treatments. Fine η′ precipitate with high density was obtained in the alloy with the T6 and RRA treatments. The η′ precipitate density in the HTPP aged alloy is decreased due to the formation of coarse particles during the pre-precipitation process at high temperature of 445 ℃. The 7075-T6I6 alloy possesses higher precipitate density and whole precipitate volume fraction within the grain than the 7075-T73 alloy, and its whole precipitate volume fraction is even greater than that of the 7075-T6 alloy. Compared with T6 treatment, the RRA, T73, T6I6 and HTPP aging treatments cause the discontinuous distribution of the η precipitates at the grain boundary, which decreases the intergranular corrosion and exfoliation corrosion susceptibility of the alloy. Meanwhile, the T6I6 and RRA treatments can keep the high strength of the 7075 Al alloy, but the studied HTPP aging and T73 treatments lower its strength.展开更多
基金supported by the National Science Foundation of China(Grant No.51171201)the National Basic Research Program of China(No.2010CB631305)
文摘Al–Ga–Sn, Al–Ga–In and Al–Ga–In–Sn alloys were prepared using arc melting technique. Their microstructures were investigated by X-ray diffraction and scanning electron microscopy with energy dispersed X-ray. Based on microstructure analysis, the phase constituents of alloys at Al grain boundaries were identified. The melting points of Al grain boundary phases were measured using differential scanning calorimeter.The reactivities of Al–water at different water temperatures indicate that liquid Al grain boundary phases promote Al–water reactions of alloys. The melting points of Al grain boundary phases affect the reaction temperatures of Al–water, leading to different reaction temperatures of alloys. The measured H2 generation rate and yields of alloys are related to the compositions of alloys. The theory of microgalvanic cell is used to explain the observed different H2 generation rates of alloys.
基金Projects(0414) supported by the Science and Technology Development Foundation of Shanghai Automotive Industry
文摘To understand the flow trace of semi-solid slurry in mold cavity, some thermocouples were inserted in mold cavity, and the reaction timing of thermocouples showed the arrival of fluid. The filling time and rate were estimated by comparison between the experiment and calculation. The introduction of computer simulation technique based on ADSTEFAN was to predict injectionforming process and to prevent defects during trial manufacture of various parts. By comparing the formed appearance of parts in experiment and in simulation, and observing the relationship between internal defects inspected by X-ray or microscope and the flow field obtained in simulation, it was indicated that both have quite good agreement in simulation and experiment. Right predictions for cast defects resulted from mold rilling can be carried out and proper direction was also proposed. The realization of numerical visualization for filling process during semi-solid die-cast process will play an important role in optimizing technology plan.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The influence of two novel aging treatments, T6I6 (130 ℃, 80 min + 65 ℃, 240 h+130 ℃, 18 h) and high-temperature pre-precipitation(HTPP) aging (445 ℃, 30 min+120 ℃, 24 h) on the tensile properties, intergranular corrosion, exfoliation corrosion behaviors and microstructures of 7075 Al alloy was studied, which were compared with the T6, T73 and RRA treatments. Fine η′ precipitate with high density was obtained in the alloy with the T6 and RRA treatments. The η′ precipitate density in the HTPP aged alloy is decreased due to the formation of coarse particles during the pre-precipitation process at high temperature of 445 ℃. The 7075-T6I6 alloy possesses higher precipitate density and whole precipitate volume fraction within the grain than the 7075-T73 alloy, and its whole precipitate volume fraction is even greater than that of the 7075-T6 alloy. Compared with T6 treatment, the RRA, T73, T6I6 and HTPP aging treatments cause the discontinuous distribution of the η precipitates at the grain boundary, which decreases the intergranular corrosion and exfoliation corrosion susceptibility of the alloy. Meanwhile, the T6I6 and RRA treatments can keep the high strength of the 7075 Al alloy, but the studied HTPP aging and T73 treatments lower its strength.