摘要
提出了用整体最优双圆弧样条拟合离散数据点的算法.首先分析了双圆弧逼近的误差分布,并且根据这个误差分布调整端点、切向和双圆弧插值时的惟一自由变量,使得数据点的误差分布均匀、圆弧的段数尽可能少,由此得到G1连续的整体最优双圆弧样条.这个方法在数值控制刀具的运动路线的设计和机器人的移动路线设计上非常有用.
An algorithm for data approximation with global optimal biarc spline is presented in this article.First, the error distribution of biarc interpolation is analyzed,then the end point,the tangent and the only variable in biarc interpolation is adjusted according to the error distribution.Through this the segments of fitting biarc spline can be reduced as much as possible and a G ~1 biarc spline curve with symmetrical error distribution is obtained.This method is useful in designing numerical controled cutter paths and robot moving paths.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2004年第2期225-232,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(60303015)
国家重点基础研究发展规划项目(2002CB312101)
关键词
算法
双圆弧
数据拟合
圆弧样条
误差分布
algorithm
biarc
data approximation
arc spline
error distribution