期刊文献+

基于Logistic函数和用户聚类的协同过滤算法 被引量:10

Collaborative filtering algorithm based on Logistic function and user clustering
下载PDF
导出
摘要 针对协同过滤推荐算法的数据稀疏性和可扩展性问题,提出一种基于Logistic函数和用户聚类的协同过滤算法.计算用户对服务关键词的偏好度,构建用户-关键词偏好向量,并基于此向量对用户进行聚类;采用Logistic函数计算用户对服务的兴趣度,并根据兴趣度相似性在目标用户所在类内寻找其最近邻居;通过最近邻居预测用户对服务的兴趣度,将兴趣度较高的服务推荐给用户.基于真实数据集的实验证明,与传统协同过滤算法相比,本文算法能取得更高的准确率,且聚类后算法运行时间显著减少,有效地提高了推荐的实时性. A collaborative filtering algorithm based on Logistic function and user clustering was proposed in view of the data sparsity and scalability issues of collaborative filtering.At first,a user's preference for service keywords was computed,and a user-keyword preference vector was constructed,based on which users were clustered.Then,a user's interest in service was computed by using a Logistic function.According to the similarity between users' interest,the nearest neighbors were found in the cluster,which included the target user.At last,the user's interest in a service was predicted through the neighbors' interests in the service,and services with high interest prediction were recommended to the user.The experimental results based on real data set show that this algorithm can achieve higher accuracy than traditional collaborative filtering algorithms,and the running time of clustering algorithm is significantly reduced,which effectively improves the real-time performance of recommendation.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第6期1252-1258,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61572186 61572187) 南京大学计算机软件新技术国家重点实验室资助项目(KFKT2015B04) 湖南省高校创新平台开放基金资助项目(15K043)
关键词 用户聚类 Logistic函数 服务关键词 协同过滤 数据稀疏性 collaborative filtering data sparsity
  • 相关文献

参考文献4

二级参考文献63

  • 1付关友,朱征宇.个性化服务中基于行为分析的用户兴趣建模[J].计算机工程与科学,2005,27(12):76-78. 被引量:27
  • 2Kellar M,Watters C,Duffy J,et al.Effect of Task on Time Spent Reading as an Implicit Measure of Interest[C]//Proc.of American Society for Information Science and Technology.Providence,USA:Citeseer,2004:168-175. 被引量:1
  • 3Halabi W S A,Kubat M,Tapia M.Time Spent on a Web Page Is Sufficient to Infer a User Interest[C]//Proc.of the IASTED European Conference on Internet and Multimedia Systems and Applications.Chamonix,France:ACTA Press,2007:41-46. 被引量:1
  • 4Claypool M,Le P,Wased M,et al.Implicit Interest Indicators[Cl// Proc.of the 6th International Conference on Intelligent User Interfaces.Santa Fe,New Mexico,USA:ACM Press,2001:33-40. 被引量:1
  • 5Choi J,Lee G,Um Y.Analysis of Internet User Interests Based on Windows GUI Messages[M].[S.l.]:Springer,2007. 被引量:1
  • 6Kim H,Chan P K.Implicit Indicator for Interesting Web Pages[C]//Proc.of International Conference on Web Information Systems and Technologies.Miami,USA:[s.n.],2005:270-277. 被引量:1
  • 7J(o)rding T Michel S.Personalized Shopping in the Web by Monitoring the Customer[C]//Proc.of British HCI Group Day Conference on Active Web.Stafford,UK:[s.n.],1999. 被引量:1
  • 8Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 9Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 10Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1

共引文献613

同被引文献83

引证文献10

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部