期刊文献+

基于满意度及特征近似的协同数据融合推荐 被引量:4

Satisfaction and Approximate Feature Based Cooperative Data Fusion and Recommendation
下载PDF
导出
摘要 为改善数据融合算法推荐执行效率及推荐结果可靠性,以便为使用者推荐更符合个性化需求的服务,设计一种基于用户满意度及特征近似的协同数据融合推荐算法(SFSTOPSIS)。首先,针对传统相似度定义分辨率不足的问题,基于用户评价置信度、兴趣偏好及特征相似度评价进行改进,并结合用户使用属性对使用者间存在的相似度替代,使之更符合用户真实感受;其次,采用时变权重方式对标准TOPSIS融合进行完善,提高TOPSIS决策融合的时变属性,实现用户相似度数据的有效属性融合;最后,基于标准测试事例进行实验对比,显示所提SFSTOPSIS算法可有效提高服务推荐精度,具有一定应用价值。 In order to improve the efficiency of the data fusion algorithm and the reliability of recommendation results, so as to recommend more personalized services to meet the needs of users, the satisfaction and approximate feature based cooperative data fusion and recommendation algorithm is proposed here. Firstly, aiming at the problem of low resolution of traditional similarity definition, here the improvement is done for it based on the user's evaluation confidence, preferences and feature similarity evaluation, and combined with the user using attribute, the similarity between the users is replaced, which makes it more in line with the user's real feeling; Secondly, the time-varying weight is used to improve the standard TOPSIS fusion algorithm, and also improve the time-varying properties of TOPSIS decision fusion, which realizes the integration of effective properties of user similarity data; Finally, based on the standard test case, the results show that the proposed SFSTOPSIS algorithm can effectively improve the service recommendation accuracy, and has a certain application value.
作者 朱泽民 肖飞
出处 《控制工程》 CSCD 北大核心 2017年第5期1013-1019,共7页 Control Engineering of China
基金 湖北省教育厅科学技术研究项目(Q20142906)
关键词 服务推荐 满意特征相似 TOPSIS融合 决策推荐 Service recommendation satisfactory feature similarity TOPSIS fusion decision recommendation
  • 相关文献

参考文献5

二级参考文献44

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:893
  • 2李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:400
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 5MICHEAL K, DAMIANOS G, ARISTIDES M. A mobile tourism recommender system[ C ]//Proc of the 15th IEEE Symposium on Computers and Communications. 2010 : 840-845. 被引量:1
  • 6ADOMAVICIUS G, TUZHILIN A. Toward the next generation Of recommender systems : a survey of the state-of-the-art and possible exten- sions[J]. IEEE Trans on Knowledge and Data Engineering,2005,17(6) :734-749. 被引量:1
  • 7SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[ C]//Proc of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285- 295. 被引量:1
  • 8李雪 左万利 赫枫龄等.传统item-based协同过滤推荐算法改进.计算机研究发展,2009,:394-399. 被引量:1
  • 9HOROZOV T, NARASIMI-IAN N, VASUDEVAN V. Using location for personalized POI recommendations in mobile environments[ C ]//Proc of International Symposium on Application and the Internet. Washington DC :IEEE Computer Society,2006 : 124-129. 被引量:1
  • 10GONG Song-jie. Employing user attribute and item attribute to enhance the collabrative filtering recommendation [J]. Journal of Soft- ware,2009,4(8) :883-889. 被引量:1

共引文献73

同被引文献29

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部