期刊文献+

变截面梁柱刚度方程的近似解 被引量:2

Approximate solution of stiffness equation of a non-uniform beam-column
下载PDF
导出
摘要 取变截面梁柱单元的挠度函数w为五次多项式 ,用最小势能原理解w及梁柱的刚度系数 .通过对截面按幂函数变化的梁柱的计算与由Bessel函数的准确解的比较 ,检验了近似解的适用性 .计算结果表明 ,当I0 /i<1 0及P/Pcr<2 (Pcr为杆件的临界荷载 )时近似解有较高的精度 .对可视为拟变截面梁柱的弹塑性梁柱 ,可以推断本近似解也适用 . Taking a fifth-order polynomial as the deflection function w of a non-uniform beam-column, the stiffness coefficient and w can be determined by the principle of minimum potential energy. Through the comparison of the calculation results for the beam-columns with varying cross sections according to a power function and the correct results by the Bessel function, the validity of the approximate solution is examined. It is shown that the accuracy of the approximate solution is satisfactory when the ration of I0 (the maximum moment of inertia of the cross section of the member) to i (the minimum moment of inertia of the cross section of the member) is less than 10 and the ratio of P (the applied axial load) to Pcr (the critical load of the member) is less than 2. It is expected that the method would also be valid for the elasto-plastic beam-column, which can be regarded as an analogical non-uniform member.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第5期553-556,共4页 Journal of Southeast University:Natural Science Edition
关键词 变截面梁柱 弹塑性杆件 最小势能法 Bessel functions Elastoplasticity Polynomials Potential energy Stiffness
  • 相关文献

参考文献7

  • 1金尼克 A H 谢贻权译.纵向弯曲与扭转[M].上海:上海科技出版社,1962.75-86. 被引量:1
  • 2庄和星..弹塑性梁柱刚度方程的能量解[D].东南大学,2003:
  • 3宋启根,徐梁,宋丹.变截面梁柱刚度方程的Bessel函数解[J].计算力学学报,2001,18(3):355-357. 被引量:12
  • 4金尼克 A H 谢贻权译.纵向弯曲与扭转[M].上海:上海科技出版社,1962.75-86. 被引量:1
  • 5Chart S L, Zhou Z H. Pointwise equilibrating polynomial element for nonlinear analysis of frames[ J ]. J Struct Engrg ASCE, 1994,1120(6) : 1307 - 1717. 被引量:1
  • 6Feng LX, Wong Y L, Chart S L. Strength analysls of semirigid steel concrete composite frames[ J ]. J Construct Res, 1999,52(3) :269 - 292. 被引量:1
  • 7Teh L H, Clarke M J. Plastic-zone analysis of 3D steel frames using beam dement[ J ]. J Souct Engrg ASCE,1999, 12.5(8) : 1328 - 1337. 被引量:1

二级参考文献4

  • 1金尼克AH 谢贻权(译).纵向弯曲与扭转[M].上海:上海科技出版社,1962.75-86. 被引量:2
  • 2雷日克·ИМ 格拉德什坦·ИС.函数表与积分表[M].北京:高等教育出版社,1959.. 被引量:1
  • 3谢贻权(译),纵向弯曲与扭转,1962年,75页 被引量:1
  • 4雷日克·ИМ,函数表与积分表,1959年 被引量:1

共引文献11

同被引文献21

  • 1陆念力,顾迪民,张立强.塔式起重机塔身稳定性计算[J].起重运输机械,1996(10):21-22. 被引量:8
  • 2Wang C K. Stability of rigid frames with non-uniform members [J]. Journal of the Structure Division, 1967, 93(1): 275-294. 被引量:1
  • 3A1-Gahtani H J. Exact stiffness for tapered members [J]. Journal of Structural Engineering, 1996, 122(10): 1234- 1239. 被引量:1
  • 4Eisenberger M. Nonuniform torsional analysis ofvariable and open cross-section bars [J]. Thin-Walled Structures, 1995, 21(2): 93- 105. 被引量:1
  • 5Yau Jong Dar. Stability of tapered I-beams under torsional moments [J]. Finite Elements in Analysis and Design, 2006, 42(10): 914-927. 被引量:1
  • 6To C W S. Linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis [J]. Journal of Sound and Vibration, 1981, 78(4): 475-484. 被引量:1
  • 7Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: McGraw-Hill, 1961: 1-16. 被引量:1
  • 8Banerjee J R, Williams F W. Exact Bernoulli-Euler static stiffness matrix for a range of tapered beam-column [J]. International Journal for Numerical Methods in Engineering, 1986, 23(9): 1615-1628. 被引量:1
  • 9Li G Q, Li J J. A tapered Timoshenko-Euler beam element for analysis of steel portal frames [J]. Journal of Constructional Steel Research, 2002, 58(12): 1531- 1544. 被引量:1
  • 10Li Q S. Buckling analysis of non-uniform bars with rotational and translational springs [J]. Engineering Structures, 2003, 25(10): 1289- 1299. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部