期刊文献+

基于静力凝聚的高精度变截面梁单元及其几何非线性分析研究 被引量:6

THE GEOMETRIC NONLINEARITY ANALYSIS OF HIGH ACCURACY TAPERED BEAM ELEMENT BASED ON THE STATIC CONDENSATION
原文传递
导出
摘要 基于Euler-Bernoulli梁单元基本假定,通过静力凝聚获得截面特性沿单元轴向连续变化的变截面梁单元高精度刚度矩阵,并提出一种基于随动坐标法求解变截面梁杆结构大位移、大转动、小应变问题的新思路。首先依据插值理论和非线性有限元理论推导出三节点变截面梁单元的切线刚度矩阵,然后使用静力凝聚方法消除中间节点自由度,从而得到一种新型非线性两节点变截面梁单元。结合随动坐标法,在变形后位形上建立随动坐标系,得到变截面梁单元的大位移全量平衡方程。实例计算表明,该新型变截面梁单元具有较高的计算精度,可应用于变截面梁杆系统大位移几何非线性分析。 On the basic assumptions of the Euler-Bemoulli beam, a new method based on the static condensation to obtain the stiffness matrix of tapered beam element is proposed, whose sections are continuously changing along its axial direction, and then, by use of the moving coordinate method, the analysis of large displacement, large rotation but small strain tapered beam structures is proposed. Firstly, according to the interpolation theory and the nonlinear finite element theory, the tangent stiffness matrix of the tapered beam element with 3-node is deduced. Then, the degrees of freedom of the middle node are eliminated by the static condensation method, and a new tapered 2-node beam element is given. Combined with the moving coordinate method, the following coordinate with simple supported is established, and the large displacement total equilibrium equation is obtained. Finally, a numerical example shows that the proposed tapered beam element has high efficiency, and it can be used for nonlinear analysis of structures withtapered beam.
出处 《工程力学》 EI CSCD 北大核心 2013年第10期257-263,共7页 Engineering Mechanics
基金 国家科技支撑计划项目(2011BAJ02B01-02)
关键词 有限单元法 变截面梁单元 静力凝聚 随动坐标法 几何非线性 finite element method tapered beam element the static condensation moving coordinate method geometric nonlinerity
  • 相关文献

参考文献11

二级参考文献27

  • 1金尼克AH 谢贻权(译).纵向弯曲与扭转[M].上海:上海科技出版社,1962.75-86. 被引量:2
  • 2雷日克·ИМ 格拉德什坦·ИС.函数表与积分表[M].北京:高等教育出版社,1959.. 被引量:1
  • 3Wang C K. Stability of rigid frames with nonuniform members [J]. Journal of the Structure Division, 1967, 93(1): 275--294. 被引量:1
  • 4Eisenberger M. Nonuniform torsional analysis of variable and open cross-section bars [J]. Thin-Walled Struc~tres, 1995, 21(2): 93--105. 被引量:1
  • 5Yau Jong Dar. Stability of tapered I-beams under torsional moments [J]. Finite Elements in Analysis and Design, 2006, 42(10): 914--927. 被引量:1
  • 6To C W S. Linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis [J]. Journal of Sound and Vibration. 1981, 78(4): 475--484. 被引量:1
  • 7Cleghom W L, Tabarrok B. Finite element formulation of a tapered Timoshenko beam for flee vibration analysis [J]. Journal of Sound and Vibration, 1992, 152(3): 461 -- 470. 被引量:1
  • 8Al-Gahtani H J. Exact stiffness for tapered members [J]. Journal of Structural Engineering, 1996, 122(10): 1234-- 1239. 被引量:1
  • 9Birnstiel C, Iffiand J B. Factors fluencing frame stability [J]. Journal of the Structural Division, 1980, 106(2): 491 --504. 被引量:1
  • 10Banerjee J R, Williams F W. Exact bemoulli-euler static stiffness matrix for a range of tapered beam-colunms [J]. International Journal for Numerical Methods in Engineering, 1986, 23(9): 1615-- 1628. 被引量:1

共引文献80

同被引文献45

  • 1周慎杰,王锡平,李文娟,王凯.履带起重机臂架有限元分析方法[J].山东大学学报(工学版),2005,35(1):22-26. 被引量:11
  • 2刘古岷.动臂变幅起重机变截面吊臂稳定性的近似计算公式[J].建筑机械,1995,15(10):12-13. 被引量:1
  • 3GB/T3811-2008.起重机设计规范[S].北京:中国标准出版社,2008. 被引量:11
  • 4Crisfield M A,Moita G F.A unified co-rotational framework for solids,shells and beams[J].International Journal of Solids and Structures,1996,33(20/21/22):2969―2992. 被引量:1
  • 5Felippa C A,Haugen B.A unified formulation of small-strain corotational finite elements:I.Theory[J].Computer Methods in Applied Mechanics and Engineering,2005,194:2285―2235. 被引量:1
  • 6Li Z X.A stabilized co-rotational curved quadrilateral composite shell element[J].International Journal for Numerical Methods in Engineering,2011,86(8):975―999. 被引量:1
  • 7Ibrahimbegovic A.On the choice of finite rotation parameters[J].Computer Methods in Applied Mechanics and Engineering,1997,149(1/2/3/4):49―71. 被引量:1
  • 8皮萨连科T C,雅科夫列夫A B,马特维也夫B B,等.材料力学手册[M].北京:中国建筑工业出版社,1981:468―481. 被引量:1
  • 9Park J S,Stallings J M.Lateral torsional buckling of stepped beams with continuous bracing[J].Journal of Bridge Engineering,2005,10(1):87―95. 被引量:1
  • 10Kukla S.Free vibrations and stability of stepped columns with cracks[J].Academic Press,2009,319:1301―1311. 被引量:1

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部