期刊文献+

一种高精度几何非线性递推凝聚梁单元 被引量:2

Investigation into high-accuracy geometrically-nonlinear recursive condensation beam element
下载PDF
导出
摘要 为了提高经典的2节点平面Bernoulli-Euler梁单元在梁杆结构稳定性分析中的计算精度,建立了一种递推凝聚梁单元.将1个杆件当作1个逐级派生的子结构,自顶向下逐级派生,使用静力凝聚方法,消除内部自由度,建立了几何非线性刚度矩阵的递推格式,自底向上逐级递推凝聚.通过递推凝聚得到了一种高精度梁单元,它与经典的2节点梁单元具有相同的自由度数量及分布.推荐进行2次递推,将得到和1个杆件划分为4个经典的2节点梁单元相同的计算精度.对梁杆结构稳定性分析中的几个典型算例进行了分析,1个杆件使用1个单元就可以得到相当准确的临界力.从理论上来说,随着递推次数的增加,其计算精度可以无限逼近精确解. To enhance the calculation accuracy for frame stability analysis, a recursive condensation beam element is proposed instead of the classical Bernoulli-Euler beam element in a two-node plane. Accordingly, the rod is progressively decomposed into sub-structures. By applying a top-down hierarchical bipartite method, the interior degrees of freedom (IT)OF) are eliminated through static condensation. Afterwards, a geometricallynonlinear rigidity matrix is established in a recursive form. A high-accuracy beam element, which possesses the same DOF and distribution as classical two-node structure, is then obtained. Based on this notion, the twice recursion, which is equivalent to the quadripartite rod calculation accuracy of a classical two-node beam element, is recommended in this study. As a subsequence, the critical forces, which are calculated based on one element per rod, can be accurately obtained via frame stability analysis on some typical examples. Consequently, it is implied that the calculation values can be theoretically converged towards the accurate solutions with the increase of recursion times.
出处 《中国工程机械学报》 2008年第1期1-5,共5页 Chinese Journal of Construction Machinery
基金 国家科技支撑计划资助项目(2006BAJ12B03-2)
关键词 递推凝聚梁单元 静力凝聚 几何非线性 稳定性分析 recursive condensation beam element static condensation geometrical nonlinearity stability analysis
  • 相关文献

参考文献6

二级参考文献39

  • 1楚中毅.梁杆系统弹性稳定分析及其优化[M].哈尔滨:哈尔滨工业大学,2000.. 被引量:1
  • 2铁摩辛格 张福范(译).弹性稳定理论[M].北京:北京科学出版社,1958.. 被引量:1
  • 3兰朋,硕士学位论文,1996年 被引量:1
  • 4张福范(译),弹性稳定理论,1958年 被引量:1
  • 5Kenny S, Pegg N, Taheri F, Dynamic Elastic Buckling of a Slender Beam with Geometric Imperfections Subject to an Axial Impulse [J]. Finite Elements in Analysis and Design, 2000(35):227-246. 被引量:1
  • 6Hu N, Hu B, Yan B, et al. Two Kinds of C^0-type Elements for Buckling Analysis of Thin - walled Curved Beams [J]. Comput. Methods Appl. Mech.Engrg, 1999(171):87-108. 被引量:1
  • 7Kim MY, Kim N, Kim SB. Spatial Stability of Shear Deformable Curved Beams with Non- symmetric Thin - walled Sections. Ⅰ: Stability Formulation and Closed - form Solutions [J]. Computers and Structures, 2005(83):2525-2541. 被引量:1
  • 8Kim MY, Kim N, Kim SB. Spatial Stability of Shear Deformable Curved Beams with Non- symmetric Thin- walled Sections. II:F. E. Solutions and Parametric Study [J]. Computers and Structures, 2005(83):2542-2558. 被引量:1
  • 9Yang Z, Sadler JP. A One - pass Approach to Dynamics of High - speed Machinery through Three - node Lagrangian Beam Elements[J]. Mechanism and Machine Theory, 1999(34): 995-1007. 被引量:1
  • 10Bathe KJ. Finite Element Procedures[M]. Englewood Cliffs: Prentice Hall, 1996. 被引量:1

共引文献53

同被引文献29

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部