期刊文献+

计及二阶效应的一种桁架臂几何非线性方法 被引量:1

A Geometric Nonlinear Method of Truss Booms Considering Second Order Effect
下载PDF
导出
摘要 基于二阶效应,运用微分方程法建立承受横向均布载荷压杆在变形位置后的微分方程,将微分方程分解为均承受轴向压力的正弦曲线和二次抛物线曲线的叠加,把变形方程变换成以待定几何参数表达的形式,根据边界条件和平衡条件求解承受横向均布载荷的压杆挠度计算公式;采用该方法对等截面空间桁架臂进行挠度变形分析,并将所求结果与有限元软件ANSYS和ABAQUS非线性分析结果进行对比分析,对比结果验证了所提出方法的可行性与实用性。 Based on the second-order effect, a differential equation of the compressing bars bearing laterally uniformly distributed loads was established under the deformation positions using the differential equation method. Then the differential equation was decomposed into the superposition of sinusoidal and quadratic parabolic curves, which were both under axial pressures. The equation was expressed in the form of undetermined geometric parameters, the deformation equation was obtained by analyzing the boundary conditions and equilibrium conditions. The deformations of the equal cross section space truss booms were analyzed by using this method, comparisons with the results of nonlinear analysis of ANSYS and ABAQUS indicate the proposed method s feasibility and practicability.
作者 王欣 喻豪杰 顾振华 胡伟楠 WANG Xin;YU Haojie;GU Zhenhua;HU Weinan(School of Mechanical Engineering,Dalian University of Technology,Dalian,Liaoning,116023)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2019年第13期1540-1544,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51475068)
关键词 二阶效应 几何非线性的 微分方程法 桁架臂 second-order effect geometrical nonlinear differential equation method truss boom
  • 相关文献

参考文献5

  • 1王勖成编著..有限单元法[M].北京:清华大学出版社,2003:776.
  • 2谢贻权,何福保主编..弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981:232.
  • 3陆念力,孟丽霞.基于二阶理论的弹性约束变截面悬臂梁刚度与稳定性分析[J].工程力学,2012,29(12):365-369. 被引量:7
  • 4刘晚成著..压杆非线性问题的解析方法[M].哈尔滨:东北林业大学出版社,2002:101.
  • 5安亭铮..履带起重机臂架系统回转平面稳定性研究[D].大连理工大学,2015:

二级参考文献15

  • 1陆念力,顾迪民,张立强.塔式起重机塔身稳定性计算[J].起重运输机械,1996(10):21-22. 被引量:8
  • 2Wang C K. Stability of rigid frames with non-uniform members [J]. Journal of the Structure Division, 1967, 93(1): 275-294. 被引量:1
  • 3A1-Gahtani H J. Exact stiffness for tapered members [J]. Journal of Structural Engineering, 1996, 122(10): 1234- 1239. 被引量:1
  • 4Eisenberger M. Nonuniform torsional analysis ofvariable and open cross-section bars [J]. Thin-Walled Structures, 1995, 21(2): 93- 105. 被引量:1
  • 5Yau Jong Dar. Stability of tapered I-beams under torsional moments [J]. Finite Elements in Analysis and Design, 2006, 42(10): 914-927. 被引量:1
  • 6To C W S. Linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis [J]. Journal of Sound and Vibration, 1981, 78(4): 475-484. 被引量:1
  • 7Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: McGraw-Hill, 1961: 1-16. 被引量:1
  • 8Banerjee J R, Williams F W. Exact Bernoulli-Euler static stiffness matrix for a range of tapered beam-column [J]. International Journal for Numerical Methods in Engineering, 1986, 23(9): 1615-1628. 被引量:1
  • 9Li G Q, Li J J. A tapered Timoshenko-Euler beam element for analysis of steel portal frames [J]. Journal of Constructional Steel Research, 2002, 58(12): 1531- 1544. 被引量:1
  • 10Li Q S. Buckling analysis of non-uniform bars with rotational and translational springs [J]. Engineering Structures, 2003, 25(10): 1289- 1299. 被引量:1

共引文献6

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部