期刊文献+

一种对错误匹配点鲁棒的多单应矩阵估计方法 被引量:2

An Estimation Method Robust to Outliers for Multiple Homographies
原文传递
导出
摘要 针对错误匹配点干扰条件下的多单应矩阵估计问题,提出了一种对错误匹配点鲁棒的多单应矩阵估计初始化方法.该方法基于特征点对的代数误差和结构相似性约束条件,将错误匹配点剔除策略有机地融合到单应矩阵估计的过程中,在不增加计算复杂度的前提下,能够有效地剔除错误匹配点并估计出多单应矩阵的初值.结合AML-COV(approximate maximum likelihood with homography covariance)后端优化算法,本文通过仿真数据实验和真实图像实验从客观性能指标和主观视觉效果方面对算法的性能进行了验证分析.实验结果表明,本文提出的多单应矩阵估计方法能够精确、高效、鲁棒地估计出多单应矩阵的值,较好地解决了错误匹配点干扰条件下的多单应矩阵估计问题. For the multiple homographies estimation problem in the case of outliers, an initialization method of the multiple homographies estimation robust to outliers is proposed. In this method, the outlier rejection is integrated into the multiple homographies estimation based on the algebraic error and the structure similarity constraint of the key-point correspondences.As a result, the outliers can be removed effectively and the initialization value of multiple homographies can be estimated with a negligible computational overhead. Combining the AML-COV(approximate maximum likelihood with homography covariance) algorithm, several experiments based on simulation data and real images demonstrate the performance of the proposed method in subjective visual quality and objective measurement quality. The experimental results show that the proposed method can achieve accurate, efficient, and robust multiple homographies estimation and performs a good solution to the multiple homographies estimation problem in the case of outliers.
出处 《机器人》 EI CSCD 北大核心 2017年第5期608-619,共12页 Robot
基金 国家自然科学基金(61203189) 陕西省自然科学基金(2015JQ6226) 人工智能四川省重点实验室开放基金(2016RYJ02)
关键词 多单应矩阵估计 近似极大似然 结构相似性约束 错误匹配点剔除 鲁棒性 multiple homographies estimation approximate maximum likelihood structure similarity constraint outlier rejection robustness
  • 相关文献

参考文献3

二级参考文献39

  • 1王红梅,张科,李言俊.图像匹配研究进展[J].计算机工程与应用,2004,40(19):42-44. 被引量:107
  • 2骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 3HARTLRY R, Z1SSERMAN A. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003: 151-360. 被引量:1
  • 4STURM P F. Critical motion sequences for monoc ular self-calibration and uncalibrated Euclidean re- construction [C]. IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition,IEEE, 1997:1100 1105. 被引量:1
  • 5SNAVELY N, SEITZ S M, SZELISKI R. Model- ing the world from internet photo collections [J]. International Journal of Computer Vision, 2008, 80(2) : 189-210. 被引量:1
  • 6GOESELE M, SNAVELY N, CURLESS B, et al.. Multi-view stereo for community photo collec- tions [C]. IEEE llth International Conference on Computer Vision, ICCV 2007, 2007:1-8. 被引量:1
  • 7CORNELIS N, LEIBE B, CORNELIS K, et al.. 3D urban scene modeling integrating recognition and reconstruction [J]. International Journal of Computer Vision, 2008, 78(2-3): 121-141. 被引量:1
  • 8NEWCOMBE R A, DAVISON A J. Live dense reconstruction with a single moving camera[C]. IEEE Conference on Computer Vision and Pat- tern Recognition ( CVPR ) 2010, 2010: 1498- 1505. 被引量:1
  • 9PULLI K. Multi-view registration for large data sets [C]. Proceedings of Second International Conference on 3-D Digital Imaging and Model- ing, 1999: 160-168. 被引量:1
  • 10KAHL F, HARTLEY R. Multiple-view geometry under the L1-Norm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(9): 1603-1617. 被引量:1

共引文献12

同被引文献12

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部