期刊文献+

基于改进MCMC方法的重叠社区发现算法 被引量:3

Overlapping Community Detection Algorithm Based on Improved MCMC Method
下载PDF
导出
摘要 文章对基于社区隶属模型AGM的重叠社区发现算法的特点及机理进行了分析,针对算法在求解过程中存在的易陷入局部最优的问题加以改进。在原有的MCMC采样方法上引入模拟回火(ST)策略和补充搜索过程,实现了待求参数的快速更新并且逐渐逼近理想中的全局最优解。在四种网络中的实验表明,改进之后的算法结果比原算法均有所提高,其中在平均聚类系数较高的DBLP科学合著网络中的实验效果提升了14%。改进之后的算法能够提高采样效率,从而提高社区发现的精确性和可靠性。 This paper analyzes the characteristics and mechanism of the overlapping community detection algorithm based on Community-Affiliation Graph Model AGM. The aim of this paper is to improve the partial optimization problem.In the original MCMC sampling method, the simulated annealing(ST) strategy and the supplementary search process were introduced to realize the fast updating of the parameters to be obtained and to approximate the global optimal solution. Experiments in four networks show that the results of the improved algorithm are improved compared with the original algorithm, and the experimental results in the DBLP scientific co-network with higher average clustering coefficient are improved by 14%. The improved algorithm can improve the efficiency of sampling and improve the accuracy and reliability of community detection.
出处 《信息网络安全》 CSCD 2017年第9期138-142,共5页 Netinfo Security
关键词 复杂网络 重叠社区 MCMC方法 极大似然 complex network overlapping community MCMC method maximal likelihood
  • 相关文献

参考文献9

二级参考文献187

  • 1郭冠军,邵芸.激光散斑效应对激光雷达探测性能的影响[J].物理学报,2004,53(7):2089-2093. 被引量:12
  • 2ZHU Xiao-jin, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [ C ]//Proc of the 20th International Conference on Machine Learning. 2003:328- 335. 被引量:1
  • 3OLIVIER C, BERNIARD S. Semi-supervised learning [ M ]. Cam- bridge: MIT Press,2006:l-53. 被引量:1
  • 4ZHU Xiao-jin. GHAHRAMANI Z. Learning from labe, lcd and unla- beled data with label propagation, CMU-CALD- 02- 107 [ R ]. Pitts, burghers : Carnegie Mellon University, 2002. 被引量:1
  • 5YANG I.,ing-peng, J! Dong-hong, NIE Yu. Information retrieval using label propagation based ranking C ]//Proc Of the 6th NTCIR Work- shop. 2007 : 140-144. 被引量:1
  • 6KIM S M, PANTEL P, DUAN Lei,et al. Improving Web page classi- fication by label propagation over click graphs [ C ]//Proc of the 18th ACM Conference on Information and Knowledge Management. New York : ACM Press,20( : 1077-1086. 被引量:1
  • 7BLAIR-GOLDENSOHN, HANNAN K, McDONALD R, et al. BuiId- ing a sentiment summarizer for local service reviews [ EB/OL ] : (2008-04-22) [ 2012, 05-221. http..//www, dejanseo, com. au/re- seareh/google134368, pd/'. 被引量:1
  • 8RAO D, RAVICHANDRAN D. Semi-supervised polarity lexicon in- duction[ C]//Proc of the 12th Conference of the European Chapter of the ACL. 2009 : 675-682. 被引量:1
  • 9SPERIOSU M, SUDAN N, UPADHYAY S, et al. Twitter polarity clas- sification with label propagation over lexieal links and the follower graph[C]//Proc of the Ist Workshop on UnsUpervised Learning in NLP. 2011: 53-63. ;. 被引量:1
  • 10NIU Zkeng-yu, JI Dong-hong,TAN C L. Word sense disambiguation using label propagation based semi-supervised learning[ C ]//Proc of the 4-3rd Annual Meeting on Association for Computational Linguis- tics. 2005 : 238-241. 被引量:1

共引文献221

同被引文献16

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部