期刊文献+

四元数谱余量彩色图像质量评价 被引量:6

Color Image Quality Assessment Based on Quaternion Spectral Residual
原文传递
导出
摘要 通过将参考图像与失真图像表示为纯四元数矩阵,提出了一种用于检测两幅图像视觉显著性区域的四元数谱余量方法。将该方法与四元数梯度特征作为指标构建彩色图像质量评价方法,并将视觉显著性作为评价指标的权值。利用Spearman等级相关系数(SROCC)、Kendall等级相关系数、Pearson线性相关系数及均方误差平方根4种客观评价指标在TID2013与CSIQ数据库中进行数值实验,结果表明,所提算法在TID2013上的SROCC值为0.8169,且与人的主观评价相匹配。 The quaternion spectral residual method for detecting the visual saliency regions of two images is proposed,by expressing the reference image and the distorted image as a pure quaternion matrix.Then both the method and the quaternion gradient features are employed to design color image quality evaluation,as well as visual saliency as the weight of the evaluation index.Numerical experiments are conducted on the TID2013 and CSIQ databases to calculate four kinds of objective evaluation indexes such as the Spearman rank correlation coefficient(SROCC),the Kendall rank correlation coefficient,the Pearson linear correlation coefficient,and the root mean squared error.The results show that the experimental SROCC value on TID2013 reaches 0.8169,which matches the subjective evaluation of humans.
作者 岳靖 刘国军 付浩 Yue Jing;Liu Guojun;Fu Hao(School of Mathematics&Statistics,Ningxia University,Yinchuan,Ningxia 750021,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第3期145-152,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61461043) 宁夏自然科学基金(2018AAC03014)
关键词 图像处理 彩色图像质量评价 四元数 谱余量 视觉显著性 image processing color image quality assessment quaternion spectral residual visual saliency
  • 相关文献

参考文献4

二级参考文献74

  • 1肖尚彬.四元数方法及其应用[J].力学进展,1993,23(2):249-260. 被引量:43
  • 2黎云汉,朱善安,祝磊.基于四元数主成分分析的人脸识别算法[J].信号处理,2007,23(2):214-216. 被引量:6
  • 3杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 4PARVEZ SAZZAD Z M, KAWAYOKE Y, HORI- TA Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing : Image Communication, 2008, 23 (4) : 257 - 268. 被引量:1
  • 5ZHANG J, LE THINH M. A new no-reference quali- ty metric for JPEG2000 images[J]. IEEE Transactions on Consumer Electronics, 2010, 56(2) :743-750. 被引量:1
  • 6BABUA R V,SURESH S, PERKISC A. No-refer- ence JPEG-image quality assessment using GAP- RBF [J]. Signal Processing, 2007, 87 (6):1493- 1503. 被引量:1
  • 7SURESH S, BABU R V, KIM H J. No-reference image quality assessment using modified extreme learning machine elassifier [J]. Applied Soft Com- puting, 2009,9(2) :541-552. 被引量:1
  • 8SHEN J, LI Q, ERLEBACHER G. Hybrid no-ref- erence natural image quality assessment of noisy, blurry, JPEG2000, and JPEG images [J]. IEEE Transactions Image Processing, 2011,20(8) :2089- 2098. 被引量:1
  • 9ANGELA D, LI Z P, MAURO B. A full-reference quality metric for geometrically distorted images[J]. IEEE Transactions on Image Processing, 2010,19 (4) :867-881. 被引量:1
  • 10WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 181-184. 被引量:1

共引文献29

同被引文献18

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部