期刊文献+

基于双目神经元响应的无参考立体图像质量评价 被引量:3

No-Reference Stereoscopic Image Quality Assessment Based on Binocular Neuron Response
原文传递
导出
摘要 为了解决多失真图像的质量预测偏差问题,根据视觉生理心理学研究中人类大脑初级视皮层(V1)神经元细胞对视觉信息处理的过程,提出了一种无参考立体图像质量评价方法。首先对失真立体图像对进行Gabor滤波,构造了基于双目神经元响应的V1区模拟刺激模型;其次通过离散余弦变换(DCT)和去均值对比度归一化(MSCN),分别提取了失真立体图像对的DCT域和空间域的自然场景统计特征;最后采用支持向量回归(SVR)算法,建立了所提取特征和主观评价值间的映射关系,进而构建了预测立体图像质量的客观评价模型。基于公开数据库对所提模型进行了验证和对比。结果表明,所提方法可统一预测单失真和多失真立体图像的感知质量,比现有评价方法的性能更优。 In order to solve the problem of quality prediction deviation of multiply-distorted images, a method for no-reference stereoscopic image quality assessment is proposed according to the process of visual information processed by neurons in human primary visual cortex(V1) in the research of visual physiology and psychology. Firstly, Gabor filtering is performed on the distorted stereoscopic image pairs to construct a simulated stimulus model of the V1 layer based on the binocular neuron response. Second, with the discrete cosine transformation(DCT) and the mean subtracted contrast normalization(MSCN), the natural scene statistics features of those distorted stereoscopic image pairs in DCT domain and spatial domain are extracted, respectively. Finally, the support vector regression(SVR) is adopted to build the objective evaluation model for predicting stereoscopic image quality via establishing the mapping relationship between the extracted features and the subjective scores. The proposed model is verified and compared based on the public databases, and the results show that the proposed method can uniformly predict the perceptual quality of singly-distorted and multiply-distorted stereoscopic images with better performance than that of other existing evaluation methods.
作者 叶蒙梦 胡晋滨 王雪津 邵枫 Ye Mengmeng;Hu Jinbin;Wang Xuejin;Shao Feng(Faculty of Information Science and Engineering,Ningbo University,Ningbo,Zhejiang 315211,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第24期202-212,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61622109)。
关键词 图像处理 图像质量评价 双目神经元 离散余弦变换 支持向量回归 image processing image quality assessment binocular neuron discrete cosine transformation support vector regression
  • 相关文献

参考文献4

二级参考文献19

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 3J.G. Daugman, “Uncertainty Relation for Resolution in Space,Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters,” J. Optical Soc.Amer., 2(7):1160-1169, 1985. 被引量:1
  • 4J.G. Daugman. Complete discrete 2-D Gabor Transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics , Speech and Signal Processing,1988,36 ( 7) :1169-1179. 被引量:1
  • 5Ian T. Young,Ian T. Young and Michael van Ginkel,“Recursive Gabor Filtering”,IEEE Transactions on signal processing,50(11):2798-2805,2002. 被引量:1
  • 6Ahmed Bilal Ashraf,Simon Lucey,Tsuhan Chen,“Reinterpreting the Application of Gabor Filters as a Manipulation of the Margin in Linear Support Vector Machines”,IEEE Transactions on pattern analysis and machine intelligence,32(7):1335-1341,2010. 被引量:1
  • 7Lee T S. Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence , 18(10) :959-971 ,1996. 被引量:1
  • 8M.Lades, J.C.Vorbruggen, J.Buhmann, J.Lange, C.v.d.Malsburg, R.P.Wurtz, W.Konen, Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE Transactions On Computers, 42(3), pp 300-311, 1993. 被引量:1
  • 9C. Liu and H. Wechsler: "Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition", IEEE Transactions on Image Processing, 11(4):467-476, 2002. 被引量:1
  • 10赵文哲,秦世引.图像质量评价的研究进展和若干问题的解决途径[J].激光与光电子学进展,2010,47(4):46-54. 被引量:18

共引文献43

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部