期刊文献+

基于优化Gabor滤波器和GMRF的笔迹特征提取方法 被引量:7

Handwriting feature extraction method based on optimal Gabor filter and GMRF
下载PDF
导出
摘要 提取有效的特征一直是笔迹鉴别的关键问题,针对传统Gabor滤波器特征提取方法存在的不足,充分利用Gabor滤波系数间的相关关系,提出一种融合全局特征和局部特征的特征提取方法。该方法先通过字符笔画的方向梯度直方图(HOG)来优化Gabor滤波器的角度参数,再利用高斯马尔科夫随机场(GMRF)模型对Gabor滤波图像中的不同局部结构信息进行描述,最终得到笔迹图像的整体特征。以楷书四大家的真迹样本和收集的英文手稿作为实验数据,采用最小加权欧式距离分类器对笔迹样本进行分类,通过五重交叉验证法分别得到97.6%和88.3%的正确分类率,表明该方法提取的特征具有较强的笔迹表征能力,是一种有效的笔迹特征提取方法。 Extracting effective features to describe handwriting is always a key problem in writer identification. In order to overcome the shortcomings of the traditional Gabor filter method, as well as to fully exploit correlation between Gabor filtering coefficient, this paper proposes a novel method for handwriting feature extraction, which merges the global and local features together. Histogram Of Gradient(HOG)of the character strokes is firstly used to optimize the orientations of Gabor filter, then Gauss Markov Random Field(GMRF)models are developed for every filtered image to describe the different local spatial structures, and finally it obtains the overall style characteristics of the handwriting images. With the four most famous regular script writers' original samples and the collected English scripts as the experimental data, the minimum weighted Euclidean distance classifier is applied to classify handwriting samples, respectively achieving correct classification rates of 97.6% and 88.3% with five-fold cross validation method, which shows that the extracted features have strong ability to characterize the handwriting, and the proposed method is effective in handwriting feature extraction.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第17期145-150,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61070165) 广州省科技计划项目(No.2011B090400458) 广州市科技计划项目(No.12A032072064)
关键词 特征提取 笔迹鉴别 GABOR滤波器 高斯马尔科夫随机场(GMRF) feature extraction writer identification Gabor filter Gauss Markov Random Field(GMRF)
  • 相关文献

参考文献21

  • 1Plamondon R, Loretteb G.Automatic signature verification and writer identification-the state of the art[J].Pattern Recognition, 1989,22(2) : 107-131. 被引量:1
  • 2Bulacu M, Schomaker L.Text-independent writer identifi- cation and verification using textural and allographic features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (4) : 701-717. 被引量:1
  • 3古孜丽塔吉.乃拜,库尔班.吾布力,卡米力.木依丁,艾斯卡尔.艾木都拉.基于多方向特征融合的维吾尔文笔迹鉴别技术[J].计算机工程与应用,2013,49(3):139-142. 被引量:2
  • 4李昕,丁晓青.基于改进微结构特征的笔迹鉴别[J].清华大学学报(自然科学版),2010,50(4):595-600. 被引量:20
  • 5文静,陈俊霖.局部轮廓结构编码的笔迹鉴别[J].计算机工程与应用,2011,47(36):180-182. 被引量:4
  • 6Obayashi M,Koga S,Feng L B,et al.Handwriting char- acter classification using Freeman's olfactory Kill model[J]. Artificial Life and Robotics,2012,17(2) :227-232. 被引量:1
  • 7Taroni F, Marquis R, Schmittbuhl M, et al.The use of the likelihood ratio for evaluative and investigative purposes in comparative forensic handwriting examination[J].Foren- sic Science International,2012,214(1/3) : 189-194. 被引量:1
  • 8Said H E S, Tan T N,Baker K D.Personal identifica- tion based on handwriting[J].Pattem Recognition, 2000, 33( 1 ) : 149-160. 被引量:1
  • 9Nusaibath C,Ameera M P M.Off-line handwritten Malay- alam character recognition using Gabor filters[J].Intema- tional Journal of Computer Trends and Technology,2013, 4(8) :2476-2479. 被引量:1
  • 10张德贤,郭小波,刘永平.笔迹鉴别预处理与特征抽取技术研究[J].微计算机信息,2006(09S):310-312. 被引量:12

二级参考文献50

共引文献66

同被引文献33

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部