期刊文献+

应用log-Gabor韦伯特征的图像质量评价 被引量:8

Image quality assessment using log-Gabor Weber feature
下载PDF
导出
摘要 考虑人眼对亮度的感知符合韦伯定律的特点,本文利用log-Gabor滤波器模拟人眼对图像的感知过程,提出了一种新的log-Gabor韦伯特征,以便保留不同尺度的符合人眼感知的结构信息。基于此,还提出了一种应用log-Gabor韦伯特征的图像质量评价方法。首先将待评价失真图像和参考图像从RGB空间转换到YIQ颜色空间,分离亮度分量和颜色分量。然后利用log-Gabor韦伯特征和梯度特征计算亮度分量失真,并结合颜色分量的失真,得到失真图像与参考图像的局部相似度图。最后利用修正的CSF函数,对局部相似度图进行加权,得到图像质量评价指标。在LIVE、CSIQ和IVC3个图像库上的实验结果表明,本文方法与人眼主观感知有很好的一致性,而且相对于其他方法,表现更加稳定。本文方法在3个图像库上的加权Spearman秩相关系数(SROCC)为0.949 8,Kendall秩相关系数(KROCC)为0.802 6,Pearson线性相关系数(PLCC)为0.943 8,相比对比方法有显著的提高。 As human eye perception for the brightness accords with the Weber's law,this paper uses the log Gabor filter to simulate the human eye perception for an image and proposes a new log Gabor Weber characteristics to keep the structural information interested by human for different scales.To assess the image quality more effectively,a new image quality assessment method was proposed by using log-Gabor Weber feature.The log-Gabor filter and Weber's law were used to obtain a newfeature named log-Gabor Weber feature(LGW).Firstly,the distorted image and reference image were transformed from the RGB color space into a YIQ color space to separate the luminance component and the chromatic component.Then,the LGW feature and gradient feature were used to calculate the distortion of luminance component.Furthermore,the distortion of chromatic component was integrated to get the local similarity map between distorted image and reference image.Finally,a modified CSF pooling strategy was applied to the overall local similarity map to obtain the final image quality index.The experimental results on three benchmark image databases,LIVE,CSIQ and IVC,indicate that the proposed method owns a good consistency with human subjective perception and it has a more stable performance as compared with other state-of-the-art methods.The weighted Spearman Rank Order Correlation Coefficient(SROCC),Kendallrank-order Correlation Coefficient(KROCC)and the Pearsonlinear Correlation Coefficient,PLCC)values on three databases by the proposed method are 0.949 8,0.802 6and 0.943 8,respectively,which notably outperform other methods.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第11期3259-3269,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61201117 No.61301042) 国家重大科学仪器设备开发专项资助项目(No.2011YQ040082) 国家科技支撑计划资助项目(No.2012BA113B04) 江苏省自然科学基金资助项目(No.BK2012189)
关键词 图像质量评价 对数盖伯滤波器 韦伯特征 颜色分量 对比度敏感度函数 image quality assessment log-Gabor filter Weber feature chromatic component contrast sensitivity function
  • 相关文献

参考文献21

  • 1SHEIKH H R, SABIR M F, BOVIK AC. A sta- tistical evaluation of recent full reference image quality assessment algorithms [J]. IEEE Transac- tions on Image Processing, 2006, 15 ( 11 ): 3443-3452. 被引量:1
  • 2范媛媛,沈湘衡,桑英军.基于对比度敏感度的无参考图像清晰度评价[J].光学精密工程,2011,19(10):2485-2493. 被引量:47
  • 3DAMERA-VENKATA N, KITE T D, GEISLER W S, et al.. Image quality assessment based on a degradation model [J]. IEEE Transactions on Im- age Processing, 2000, 9(4): 636-650. 被引量:1
  • 4CHANDLER D M, HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natu- ral images [J]. IEEE Transactions on Image Pro- cessing, 2007, 16(9) : 2284-2298. 被引量:1
  • 5WANG Z, BOVIK A C, SHEIKH H R,etal.. Im- age quality assessment: t'rom error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4) : 600-612. 被引量:1
  • 6WANG Z, SIMONCELLI E P, BOVIK A C. Mul tiscale structural similarity for image quality assess ment [C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2003: 1398-1402. 被引量:1
  • 7WANG Z, LI Q. Information content weighting for perceptual image quality assessment [J] . IEEE Transactions on Image Processing, 2011, 20 (5) : 1185-1198. 被引量:1
  • 8SHEIKH H R, BOVIK A C, VECIANA G. An in formation fidelity criterion for image quality assess- ment using natural scene statistics [J ]. IEEE Transactions on Image Processing, 2005, 14 (12) : 2117 2128. 被引量:1
  • 9SHEIKH H R, BOVIK A C. Image information and visual quality [J]. IEEE Transactions on Im age Processing, 2006, 15(2): 430 444. 被引量:1
  • 10ZHANG L, ZHANG L, MOU X O, et al.. FSIM: A feature similarity index for image quali- ty assessment [J]. IEEE Transactions on Image Processing, 2011, 20(8).. 2378-2386. 被引量:1

二级参考文献66

共引文献74

同被引文献54

  • 1刘长英,车仁生,黄庆成,叶东,于之靖.视觉测量中光学特征点亮度控制方法研究[J].光学精密工程,2004,12(z1):93-96. 被引量:2
  • 2闫乐乐,李辉,邱聚能,梁平.基于区域对比度和SSIM的图像质量评价方法[J].应用光学,2015,36(1):58-63. 被引量:18
  • 3陈喜春,曹峰梅,金伟其.基于极坐标的相向运动图像模糊的递归模型[J].光子学报,2007,36(3):552-556. 被引量:10
  • 4Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. 被引量:1
  • 5王宇庆.基于局部方差和互信息的融合图像质量评价[J].光学精密工程,2015,23(10z):515-521. 被引量:2
  • 6Mittal A,Soundararajan R,Bovik A C.Making a“completely blind”image quality analyzer[J].IEEE Signal Processing Letters,2013,20(4):209-212. 被引量:1
  • 7Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Tansaction on Image Processing,2005,14(12):2091-2106. 被引量:1
  • 8Liu Li-xiong,Dong Hong-ping,Huang Hua.Noreference image quality assessment in curvelet domain[J].Signal Processing:Image Communi-cation,2014,29(4),494-505. 被引量:1
  • 9Lu Wen,Zeng Kai,Tao Da-cheng.No-refernece image quality assessment in contourlet domain[J].Neurocomputing,2010,73(6):784-794. 被引量:1
  • 10Moorthy A K,Bovik A C.Blind image quality assessment:from natural scene statistics to perceptual quality[J].IEEE Transaction on Image Processing,2011,20(12):3350-3364. 被引量:1

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部