期刊文献+

基于极限学习机的底层特征全参考彩色图像质量评价方法 被引量:1

Full Reference Color Image Quality Assessment Method via Low-level Features Combination with Extreme Learning Machine
下载PDF
导出
摘要 作为图像质量的监测和评价工具,图像质量评价(image quality assessment,IQA)在各种图像处理系统中发挥着重要的作用,理想的IQA方法应该与人类视觉系统(human visual system,HVS)相一致.目前HVS对图像的理解主要是依据图像的底层特征,本文提出了一种新的全参考(full reference,FR)彩色图像IQA方法.首先,提取了结构对比度指标(structural contrast index,SCI)、梯度、局部二值模式(local binary pattern,LBP)和色度四类底层特征图,用于刻画图像的不同特征属性;其次,利用不同的特征池化策略对每类特征分别处理,将其组成一组相似特征向量作为图像质量的检测器并采用极限学习机(extreme learning machine,ELM)建立回归模型,得到客观的质量分数;最后,与目前流行的8种FR IQA方法在5个标准IQA数据库上进行数值实验.结果表明,该方法整体性能优于其他方法,能够有效地提高大多数失真类型的预测精度. As an image quality monitoring and evaluation tool,image quality assessment(IQA)plays an important role in various image processing systems.The ideal IQA method should be consistent with human visual system(HVS).Suppose HVS understanding an image mainly according to its low-level features,a novel Full Reference(FR)color IQA method.Firstly,four different types of low-level feature maps are extracted,namely structural contrast index(SCI),gradient,local binary pattern(LBP),and chroma,which are used to characterize different feature attributes of the image.Secondly,different feature pooling strategies are employed to process each type of features respectively,and a set of similar feature vectors are formed as the detector of image quality.Then,extreme learning machine(ELM)is used to establish regression model and map the feature vectors into an objective quality score.Finally,extensive experiments performed on five benchmark IQA databases and compared with eight state-of-the-art FR IQA metrics.The results demonstrate that the overall performance of proposed method is better than other methods,and can effectively improve the accuracy of IQA index on most of distortions.
作者 马月梅 付浩 刘国军 杨玲 魏立力 Ma Yuemei;Fu Hao;Liu Guojun;Yang Ling;Wei Lili(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期91-101,共11页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金项目(62061040) 宁夏区重点研发计划项目(2019BEG03056) 宁夏自然科学基金项目(2021AAC03039).
关键词 彩色图像质量评价 底层特征 局部二值模式 梯度 结构对比度指标 极限学习机 color image quality assessment low-level features local binary pattern gradient structural contrast index extreme learning machine
  • 相关文献

参考文献4

二级参考文献126

  • 1杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 2Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585. 被引量:1
  • 3Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204. 被引量:1
  • 4Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987. 被引量:1
  • 5Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420. 被引量:1
  • 6Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323. 被引量:1
  • 7Ojala T, Pietikinen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59. 被引量:1
  • 8Li S Z, Jain A K. Handbook of Face Recognition [ M]. Berlin, Germany: Springer-Verlag, 2004. 被引量:1
  • 9Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037-2041. 被引量:1
  • 10Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classifi- cation using feature distributions [ J ]. Pattern Recognition, 2000, 33(1) : 43-52. 被引量:1

共引文献76

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部