摘要
快脉冲测量探头是大型脉冲功率装置安全稳定运行的基石,研究其标定技术对获取准确可靠的脉冲功率装置运行参数具有重要意义。为此通过分析不同快脉冲测量探头的实际应用环境,利用同轴线脉冲方波成形原理,提出了快脉冲测量探头的2种规范化标定方法:在线标定和离线标定,其中,在线标定方法适合于受分布参数影响较大的测量探头,如微分环和电容分压器等,而离线标定方法适合于受分布参数影响较小的测量探头,如Rogowski线圈和小电阻分流器等。2种标定方法均获得了响应时间为ns量级的矩形方波脉冲,且具有相同的放电回路和具有可溯源到国家标准的测量不确定度,分析了测量确定不确定度的合成方法。研究结果将对快脉冲测量探头的规范化标定具有重要参考价值。
Fast pulsed electrical sensors are the base for a large pulsed power device running safely and stably. It is very important for fast pulsed electrical sensors to study the calibration technology so as to help get the accurate running parameters for pulsed power device. By analyzing the measuring environment of different sensors, we put forward two methods of calibration using the pulsed rectangle theory of coaxial line, such as on-line calibration and off-line calibration.Furthermore, the on-line calibration method is suitable for the sensors that are remarkably affected by stray parameters,such as capacitors with divided voltage and differential rings. However, the off-line calibration method is fit for the sensors that are slightly affected by stray parameters, such as Rogowski and low resistance shunt. There are the same schematic of discharge circuit for both of the on-line and off-line calibration methods, which have nanosecond rise time of rectangle pulsed. Finally, we analyze the uncertainty factors of discharge circuit and discuss the method of uncertainty analysis. The results will have important values for fast pulsed electrical sensors to form a normalization method of calibration.
作者
姚伟博
张永民
徐启福
汤俊萍
呼义翔
来定国
YAO Weibo;ZHANG Yongmin;XU Qifu;TANG Junping;HU Yixiang;LAI Dingguo(State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Northwest Institute of Nuclear Technology,Xi’an 710024,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2019年第3期814-819,共6页
High Voltage Engineering
关键词
快脉冲测量
标定方法
阶跃响应
匹配负载
不确定度分析
fast pulsed measurement
calibration method
step response
matched load
uncertainty analysis