摘要
采用化重积分为累次积分的方法,把一个具有3次代数精确度的一元函数积分公式,推广到二重积分情形,得到了一个仅带边界点偏导数的数值积分公式,并给出截断误差余项,最后通过两个数值算例验证了公式的有效性.
By using the method of transforming multiple integrals into repeated integrals,a single variable function integration formula with third-order algebraic accuracy was extended to the case of double integrals.A numerical integration formula with only partial derivatives at boundary points was obtained,and the truncation error margin was given.Finally,the effectiveness of the formula was verified through two numerical examples.
作者
崔嵬
CUI Wei(College of Data Science and Software Engineering,Baoding University,Baoding,Hebei 071000,China)
出处
《保定学院学报》
2024年第4期99-104,共6页
Journal of Baoding University
基金
2024年度河北省高等学校科学研究项目“基于神经网络的二重数值积分算法研究与应用”(ZC2024097)。
关键词
二重积分
数值积分
截断误差
偏导数
double integrals
numerical integration
truncation error
partial derivative