期刊文献+

基于图神经网络的个性化食谱推荐算法

Personalized diet recommendation algorithm based on graph neural network
下载PDF
导出
摘要 在线食谱分享流行,食物推荐变得关键。基于现有推荐系统存在的问题:(1)忽略食材关联,影响个性化推荐;(2)未考虑用户对卡路里的偏好,本文提出自监督的卡路里感知异构图网络(SCHGN),建模食材关系并融入卡路里信息。该模型构建用户、食谱、食材和卡路里的异构图,并揭示它们之间的复杂联系。其次,通过自监督学习探索食材共现性,使用分层传递和注意力机制捕捉用户对卡路里的动态喜好。食物推荐基于用户的卡路里感知与食谱表示的相似性。实验证明此方法有效。 Online recipe sharing is popular,and food recommendation becomes crucial.Existing recommendation systems have problems:(1)ignoring the association between ingredients,affecting personalized recommendations;(2)not considering users'preferences for calories.We propose a self-supervised calorie-aware heterogeneous graph network(SCHGN),modeling the relationship between ingredients and incorporating calorie information.This model builds a heterogeneous graph of users,recipes,ingredients,and calories,revealing their complex connections,exploring ingredient co-occurrence through self-supervised learning,and using hierarchical propagation and attention mechanisms to capture users'dynamic preferences for calories.Food recommendations are based on the similarity between users'calorie-aware representations and recipe representations.Experiments prove the effectiveness of this method.
作者 曾子文 袁操 ZENG Ziwen;YUAN Cao(School of Mathematics and Computer Science,Wuhan Polytechnic University,Wuhan 430023,China)
出处 《武汉轻工大学学报》 CAS 2024年第3期82-89,105,共9页 Journal of Wuhan Polytechnic University
关键词 食物推荐 食谱热量 异构图 自监督学习 food recommendation recipe calories heterogeneous graph self-supervised learning
  • 相关文献

参考文献5

二级参考文献50

  • 1许宁,张毅坤.基于正交分层聚类算法软件可靠性模型的预测分析[J].计算机应用,2007,27(3):635-637. 被引量:6
  • 2何琳,杜慧平,侯汉清.领域本体的半自动构建方法研究[J].图书馆理论与实践,2007(5):26-27. 被引量:13
  • 3GALLUCCIO L,MICHEL 0,COMON P,et al. Cluste-ring with a new distance measure based on a dual-rootedtree[ J]. Information Sciences, 2013(251 ) : 96-113. 被引量:1
  • 4KARABOGA D,OZTURK C. A novel clustering ap-proach :Artificial Bee Colony ( ABC) algorithm[ J]. Ap-plied Soft Computing, 2011,11 (1) : 652-657. 被引量:1
  • 5LEE J, LEE D. An Improved Cluster Labeling Method forSupport Vector Clustering[ J] . IEEE Transactions on pat-tern analysis and machine intelligence, 2005 , 27 ( 3 ):461464. 被引量:1
  • 6FU L,NIU B,ZHU Z, et al. CD-HIT: accelerated forclustering the next-generation sequencing data [ J ]. Bioin-formatics, 2012, 28(23) : 3150-3152. 被引量:1
  • 7TIAN Zheng, LI Xiaobin, JU Yanwei. Disturbing Analy-sis on Spectrum Clustering[ J]. Science in China: SeriesE, 2007,37(4) : 527-543. 被引量:1
  • 8JAIN A K. Data clustering : 50 years beyond K-means [ J ].Pattern Recognition Letters, 2010, 31(8) : 651-666. 被引量:1
  • 9DOMINGOS P. Prospects and challenges for multi-rela-tional data mining[J]. ACM SIGKDD Explorations News-letter, 2003,5(1) : 80-83. 被引量:1
  • 10张薇,刘加.电话语音的多说话人分割聚类研究[J].清华大学学报(自然科学版),2008,48(4):574-577. 被引量:6

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部