期刊文献+

基于混合距离学习的鲁棒的模糊C均值聚类算法 被引量:6

Robust FCM clustering algorithm based on hybrid-distance learning
下载PDF
导出
摘要 距离度量对模糊聚类算法FCM的聚类结果有关键性的影响。实际应用中存在这样一种场景,聚类的数据集中存在着一定量的带标签的成对约束集合的辅助信息。为了充分利用这些辅助信息,首先提出了一种基于混合距离学习方法,它能利用这样的辅助信息来学习出数据集合的距离度量公式。然后,提出了一种基于混合距离学习的鲁棒的模糊C均值聚类算法(HR-FCM算法),它是一种半监督的聚类算法。算法HR-FCM既保留了GIFP-FCM(Generalized FCM algorithm with improved fuzzy partitions)算法的鲁棒性等性能,也因为所采用更为合适的距离度量而具有更好的聚类性能。实验结果证明了所提算法的有效性。 The distance metric plays a vital role in the fuzzy C-means clustering algorithm. In actual applications, there is a practical scenario in which the clustered data have a certain amount of side information, such as pairwise constraints with labels. To sufficiently utilize this side information, first, we propose a learning method based on hybrid distance, in which side information can be utilized to attain a distance metric formula for the data set. Next, we propose a robust fuzzy C-means clustering algorithm (HR-FCM algorithm) based on hybrid-distance learning, which is semi-supervised. The HR-FCM inherits the robustness of the GIFP-FCM ( generalized FCM algorithm with improved fuzzy partitions) and has better clustering performance due to the more appropriate distance metric. The experimental results confirm the effectiveness of the proposed algorithm.
作者 卞则康 王士同 BIAN Zekang WANG Shitong(School of Digital Media, Jiangnan University, Wuxi 214122, China)
出处 《智能系统学报》 CSCD 北大核心 2017年第4期450-458,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61272210)
关键词 距离度量 FCM聚类算法 成对约束 辅助信息 混合距离 半监督 GIFP—FCM 鲁棒性 distance metric FCM clustering algorithm pairwise constraints side information hybrid distance semi-supervised GIFP-FCM robustness
  • 相关文献

参考文献4

二级参考文献42

  • 1许宁,张毅坤.基于正交分层聚类算法软件可靠性模型的预测分析[J].计算机应用,2007,27(3):635-637. 被引量:6
  • 2Wu KL,Yang MS.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278.[doi:10.1016/S0031-3203(01)00197-2]. 被引量:1
  • 3Xing EP,Ng AY,Jordan MI,Russell S.Distance metric learning with application to clustering with side-information.In:Becker S,Thrun S,Obermayer K,eds.Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2002.505-512. 被引量:1
  • 4Bar-Hillel A,Hertz T,Shental N,Weinshall D.Learning a mahalanobis metric from equivalence constraints.Journal of Machine Learning Research,2005,6:937-965. 被引量:1
  • 5Bilenko M,Basu S,Mooney RJ.Integrating constraints and metric learning in semi-supervised clustering.In:Greiner R,Schuurmans D,eds.Proc.of the 21st Int'l Machine Learning Conf.New York:ACM Press,2004.81-88. 被引量:1
  • 6Ceccarelli M,Maratea A.Improving fuzzy clustering of biological data by metric learning with side information.Int'l Journal of Approximate Reasoning,2008,47(1):45-57.[doi:10.1016/j.ijar.2007.03.008]. 被引量:1
  • 7Yang L,Jin R,Sukthankar R,Liu Y.An efficient algorithm for local distance metric learning.In:Proc.of the AAAI.Menlo Park:AAAI Press,2006.543-548. 被引量:1
  • 8Ye JP,Zhao Z,Liu H.Adaptive distance metric learning for clustering.In:Proc.of the CVPR.Washington:IEEE Computer Society Press,2007.1-7. 被引量:1
  • 9Wang XZ,Wang YD,Wang LJ.Improving fuzzy c-means clustering based on feature-weight learning.Pattern Recognition Letters,2004,25(10):1123-1132.[doi:10.1016/j.patrec.2004.03.008]. 被引量:1
  • 10Atkinson K.An Introduction to Numerical Analysis.2nd ed.,New York:John Wiley & Sons,1989. 被引量:1

共引文献33

同被引文献22

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部