期刊文献+

基于二分法的KPCA核参数优选

Dichotomy-based optimal selection of KPCA kernel parameters
下载PDF
导出
摘要 核主元分析(kernel principal component analysis, KPCA)方法利用核函数把输入空间中的非线性问题转化为特征空间中的线性问题,目前被广泛应用于非线性过程工业的故障检测.采用KPCA算法进行故障检测,核函数中核参数的选择是影响检测结果准确性和可靠性的重要因素.然而,在实际应用中,大多时候是根据经验或采用交叉验证方法进行核参数的选取,因此,通常需要对核参数的取值进行反复调整.这不仅有碍于实现故障检测的自动化、智能化,还难以保证找到的核参数为最优值,从而影响故障检测性能.为此,文中基于二分法思想,提出一种新的KPCA核参数优选方法,并将其用于田纳西-伊斯曼过程(tennessee eastman, TE)故障检测.实验结果表明,该算法能够有效解决KPCA的核参数优选问题,进而确保故障检测结果的准确性和可靠性. Kernel principal component analysis(KPCA),by aid of kernel functions,transforms the nonlinear problems in the input space into linear problems in the feature space,which has currently been widely adopted in fault detection by nonlinear process industry.The adoption of KPCA algorithm for fault detection finds the selection of kernel parameters in the kernel function an important factor affecting the accuracy and reliability of the detection results.Yet in practical applications,the values of kernel parameters are mostly selected,relying priamarily on one’s experience or cross-validation method,which fequently requires repeated adjustments of the value of the kernel parameters..This not only hinders the automation and intelligence of fault detection,but also makes it difficult to ensure that the selected kernel parameters are the optimal values,thus to affect the final performance of fault detection.Therefore,this paper,based on the idea of dichotomy,presents an optimized method of kernel parameters selection in KPCA and applies it to the fault detection of TE process.Experimental results find that the algorithm can effectively solve the kernel parameter optimization problem of KPCA,and ensure the accuracy and reliability of fault detection results.
作者 刘春燕 闫广峰 林成 张雪莲 LIU Chunyan;YAN Guangfeng;LIN Cheng;ZHANG Xuelian(College of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang,Sichuan 641100,China;College of Geography&Resource Science,Neijiang Normal University,Neijiang,Sichuan 641100,China)
出处 《内江师范学院学报》 CAS 2024年第2期71-76,共6页 Journal of Neijiang Normal University
基金 内江师范学院科研资助项目(2021YB37,2021YB36) 四川省科技计划重点项目(2022NSFSC0525)。
关键词 核主元分析 核参数选取 故障检测 TE过程 二分法 kernel principal component analysis kernel parameters selection fault detection tennessee eastman process dichotomy
  • 相关文献

参考文献8

二级参考文献41

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部