期刊文献+

基于RBF神经网络的非线性主元分析新方法 被引量:4

New Nonlinear Principal Analysis Method Based on RBF Neural Network
下载PDF
导出
摘要 在分析非线性主元曲线性质基础上,提出了非线性负载是变量X的函数,基于此,设计非线性负载RBF神经网络结构,给出了随机梯度下降算法。提出的非线性主成分分析方法与以往方法比较,得分和负载在概念上具有和线性主成分分析相同的解释,在结构上较为简单,解决了缺乏训练数据问题,训练容易。与线性主成分分析的对比仿真验证了提出方法的有效性。 Based on the analysis of non-linear prbtcipal component curve, it was proposed that non-linear projecting direction (PD) was the function of variable X. Accordingly, an RBF neural network structure was designed and a stochastic gradient descent algorithm was given to seek PD. Compared with other methods, scores and loadings of the nonlinear principal component analysis (NLPCA ) method have the same interpretations as linear Principal Component Analysis (PCA) It is easy to train the NN with simpler structure. Moreover, the method gets over the difficulty of lacking training data. Simulation results show that the proposed method is more effective compared with linear PCA.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第24期5684-5687,共4页 Journal of System Simulation
基金 国家自然科学基金(60374003) 辽宁省自然科学基金(20072034)
关键词 非线性主成分分析 RBF神经网络 得分 负载 NLPCA RBF Neural Network scores loadin's
  • 相关文献

参考文献12

  • 1Q in s J. Statistical process monitoring: basics and beyond [J]. Journal of Chemometrics (S0886-9383), 2003, 17(8/9): 480-502. 被引量:1
  • 2Jolliffe I T. Principal Component Analysis [M]. Germany: Springer, 2002. 被引量:1
  • 3Mark A Kramer. Nonlinear principal component analysis using auto associative neural network [J]. AICHE Journal (S0001-1541), 1991, 37(2): 43-49. 被引量:1
  • 4Jia-Hui Jiang, Ji-Hong Wang. Neural network learning to non-finear principal component analysis [J]. Analytica Chimica Acta (S0003- 2670), 1996, (336): 209-222. 被引量:1
  • 5S Tan, M Mavrovouniotis. Reducing data dimensionality through optimizing Neural Network inputs [J]. AIChE Journal (S0001-1541 ), 1995, 41(6): 135- 139. 被引量:1
  • 6D Dong, T J Mcavoy. Nonlinear Principal Component Analysis Based on Principal Curves and Neural Networks [J]. Computers and Chem. Eng. (S0098-1354), 1996, 20(1): 65-78. 被引量:1
  • 7Ryo Saegusaa, Hitoshi Sakanob, Shuji Hashimotoa. Nonlinear principal component analysis to preserve the order of principal components [J]. Neurocomputing (S0925-2312), 2004, 61 (1): 57-70. 被引量:1
  • 8B SchEolkopf, A Smola, K M Euller, Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Comput. (S0899-7667). 1998, 10(5): 1299-1319. 被引量:1
  • 9M Daszykowski, B Walczak l, D L Massart. A journey into low-dimensional spaces with autoassociative neural networks [J]. Talanta (S0039-9140), 2003, 59(5): 1095-1105. 被引量:1
  • 10赵立杰,王纲.输入训练神经网络PCA故障检测方法[J].系统仿真学报,2001,13(z1):149-151. 被引量:4

二级参考文献5

  • 1[1]Dong D, Thomas J. Batch tracking via nonlinear principal component analysis [J]. AICHE J., 1996, 42(8): 2199-2208. 被引量:1
  • 2[2]Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computer Chem Eng, 1992, 16(4): 379-391. 被引量:1
  • 3[3]Dong D, McAvoy T J. Nonlinear principal component analysis--Based on principal curves and neural network [J]. Computer Chem Eng, 1996, 20(1): 65-78. 被引量:1
  • 4[4]Tan S, Mavrovouniotis M L. Reducing data dimensionality through optimizing neural network inputs [J]. AICHE J, 1995, 41(6): 1471- 1480. 被引量:1
  • 5[5]Nomikos P, Macgregor J. Monitoring batch processes using multiway principal component analysis [J]. AICHE J, 1994, 40(8): 1361-1375. 被引量:1

共引文献3

同被引文献66

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部