期刊文献+

Jordan神经网络的改进研究 被引量:1

The Improvement Studies on Jordan Neural Networks
下载PDF
导出
摘要 针对Jordan神经网络的反馈网络的反馈信息表征能力不强的缺点,提出了一种新的反馈网络模型,对Jordan神经网络的缺点进行了改进,并且对原来的训练学习算法进行了改进,提出了一种提取绝对值最大权的训练学习算法来降低计算复杂性,最终给出了实验结果证明。 Aiming at the shortcomings of the recurrent network recurrent information characterization weak capacity about Jordan neural network, a new model of the recurrent network was proposed for improving the shortcomings about the Jordan neural network, and a a training learning algorithm extracting the greatest absolute value weight was proposed in order to reduce the complexity of calculating. For improving the original training learning algorithm, eventually this paper gives the experimental results to illustrate it.
作者 张宁 陈笑蓉
出处 《贵州大学学报(自然科学版)》 2009年第1期36-39,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(10671045)
关键词 反馈网络 Jordan神经网络 复杂性 表征能力 recurrent neutral network jordan neural networks complexity characterization capacity
  • 相关文献

参考文献8

二级参考文献31

  • 1陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995.. 被引量:100
  • 3黄琳.系统与控制理论中的线性代数[M].北京:科学出版社,1986(第5章).. 被引量:3
  • 4罗家洪.矩阵分析引论[M].广州:华南理工大学出版社,1993.. 被引量:3
  • 5[7]Elman J. Finding Structure in Time[J]. Cognitive Science ,1990, 14: 179-211. 被引量:1
  • 6[9]Poddar P, Unnikrishnan KP. Nonlinear prediction of speech signals using memory neuron networks[A]. Neural Networks for Signal Processing[C]. IEEE Press, 1991,31. 395-404. 被引量:1
  • 7[1]Lin T, Horne BG, Tino P, et al. Learning long-term dependencies in NARX recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1996,7 (6):1329-1338. 被引量:1
  • 8[2]Jordan MI. Supervise learning and systems with excess degrees of freedom[R]. Massachusetts Institute of Technology: COINS Technical Report, 1988. 88-27. 被引量:1
  • 9[3]Tsoi AC, Back AD. Locally Recurrent Globally Feedforward Networks: A Critical Review of Architectures [J]. IEEE Transaction on Neural Networks, 1994, 5 (2): 229-239. 被引量:1
  • 10[4]Gori M, Bengio Y, Mori RD. BPS: A learning algorithm for capturing the dynamic nature of speech [A]. Internation Joint Conference on Neural Networks[C], 1989,2. 417-423. 被引量:1

共引文献81

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部