期刊文献+

面向ECG的二分法稀疏度自适应匹配追踪重构算法 被引量:2

Dichotomy sparsity adaptive matching pursuit in compressedsensing reconstruction algorithm for ECG
下载PDF
导出
摘要 为了减少无线传感器网络(WSNs)心电信号的压缩感知重构时间,提出一种面向心电(ECG)信号的二分法稀疏度自适应匹配追踪重构算法。基于二分法快速接近真实稀疏度的值,并通过相邻迭代之间残差范数值差的绝对值确定下一轮迭代计算区间。实验结果表明:与传统稀疏自适应匹配追踪重构算法相比较,改进算法可显著降低重构时间并接近子空间追踪算法和正交匹配追踪算法;与子空间追踪算法和正交匹配追踪算法相比,峰值信噪比平均提升了6.29%和5.43%。 To reduce the time consumption in the reconstruction of electrocardiograph(ECG)signals for the wireless sensor networks(WSNs),a dichotomy sparsity adaptive matching pursuit(DSAMP)algorithm for compressed sensing without knowing sparsity is proposed.The algorithm calculates the stage value for approaching the real sparsity based on dichotomy,and determines the direction of stage switching by the absolute value of the difference in residual norm between two adjacent iterations.Results show that the runtime of DSAMP can be reduced compared with that of sparsity adaptive matching pursuit and is similar to those of subspace pursuit and orthogonal matching pursuit.The peak signal to noise ratio of the DSAMP is improved 6.29%and 5.43%,compared with the that of orthogonal matching pursuit and subspace pursuit on average,respectively.
作者 王涛 田青 虞致国 孙益洲 顾晓峰 WANG Tao;TIAN Qing;YU Zhiguo;SUN Yizhou;GU Xiaofeng(Engineering Research Center of Internet of Things Technology Applications,Ministry of Education,Department of Electronic Engineering,Jiangnan University,Wuxi 214122,China;Taihu University of Wuxi,Wuxi 214064,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第4期131-134,138,共5页 Transducer and Microsystem Technologies
基金 中央高校基本科研业务费专项资金资助项目(JUSRP51510) 江苏省研究生科研与实践创新计划项目(SJCX18-0647) 江苏省物联网应用技术重点建设实验室资助项目。
关键词 压缩感知 心电(ECG) 重构 自适应匹配追踪 compressed sensing electrocardiograph(ECG) reconstruction adaptive matching pursuit
  • 相关文献

参考文献5

二级参考文献56

  • 1Candes E. Compressive Sampling [C]//Proceedings of International Congress of Mathematicians: Vol 3. Madrid: European Mathematical Society Publishing House, 2006: 1433-1452. 被引量:1
  • 2Donoho D L. Compressed Sensing [J]. IEEE Trans on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 3Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 4Kim S J, Koh K, Lustig M, et al. An Interior-point Method for Large-scale l1 Regularized Least Squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) : 606-617. 被引量:1
  • 5Mario A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and other Inverse Problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) : 586-597. 被引量:1
  • 6Mallat S, Zhang Z. Matching Pursuits with Time-frequency Dictionaries [J]. IEEE Trans Signal Process, 1993, 41 (12) : 3397-3415. 被引量:1
  • 7Tropp J, Gilbert A. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit[J]. IEEE Trans on Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 8Donoho D L, Tsaig Y, Drori I, et al. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit[R/OL]. [2006-07-05]. http://www, dsp. ece. rice. edu/cs. 被引量:1
  • 9Needell D, Tropp J A. CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples [J]. Applied and Computational Harmonic Analysis, 2008, 26(3):301-321. 被引量:1
  • 10Needell D, Vershynin R. Signal Recovery from Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2) : 310-316. 被引量:1

共引文献28

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部