期刊文献+

基于混合匹配追踪算法的MIMO雷达稀疏成像方法 被引量:4

An Imaging Method for MIMO Radar Based on Hybrid Matching Pursuit
下载PDF
导出
摘要 多输入多输出(MIMO)雷达作为一种新型的雷达体制,其成像兼具高分辨率与实时性的优点。由于观测区域的稀疏性,MIMO雷达成像可以用压缩感知的方法进行处理。而现有的MIMO雷达稀疏成像的贪婪恢复算法中,正交匹配追踪算法(OMP)存在成像图像有伪影的缺点,子空间追踪算法(SP)则受到低分辨率的困扰。针对上述问题,该文提出一种称为混合匹配追踪算法的压缩感知贪婪算法以实现MIMO雷达稀疏成像。通过将两种贪婪恢复算法结合起来,利用OMP算法选择基信号的正交性和SP算法具有基信号选择的回溯策略,来重构出高分辨率且没有伪影的雷达图像。仿真实验验证了所提算法的有效性。 MIMO radar is an emerging radar system that has significant potential. MIMO radar can provide high resolution and real-time imaging solution. Because of the sparsity of the observation zone, the task of MIMO radar imaging can be formulated as a problem of sparse signal recovery based on Compressed Sensing (CS). In MIMO radar imaging application based on CS, existing greedy algorithms, such as the Orthogonal Matching Pursuit (OMP) algorithm and the Subspace Pursuit (SP) algorithm, suffer from artifacts and low-resolution, respectively. To deal with the drawback of existing greedy algorithms, a Hybrid Matching Pursuit (HMP) algorithm is proposed to combine the strengths of OMP and SP. By using of the orthogonality among selected basis-signals and the backtracking strategy for basis-signal reevaluation, the HMP algorithm can reconstruct high-resolution radar image with no artifacts. Simulation results demonstrate the effectiveness and superiority of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2415-2422,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571148) 中国博士后特别资助(2015T80328) 中国博士后科学基金(2014M550182) 黑龙江省博士后特别资助(LBH-TZ0410) 哈尔滨市科技创新人才专项(2013RFXXJ016)~~
关键词 MIMO雷达 压缩感知 稀疏成像 贪婪算法 MIMO radar Compressive sensing Sparse imaging Greedy algorithm
  • 相关文献

参考文献25

  • 1FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar an idea whose time has come[C]. IEEE Radar Conference Philadelphia, PA, USA, 2004: 71-78. 被引量:1
  • 2刘涛.MIMO雷达技术及其应用研究[J].无线互联科技,2015,12(12):136-137. 被引量:1
  • 3BLISS D W and FORSYTHE K W. MIMO radar medical imaging: Self-interference mitigation for breast tumor detection[C]. The 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2006: 1558-1562. 被引量:1
  • 4王伟,马跃华,王咸鹏.一种高运算效率的MIMO雷达BP成像算法[J].系统工程与电子技术,2013,35(10):2080-2085. 被引量:8
  • 5ZHUGE X D, YAROVOY A G, SAVELYEV T, et al. Modified Kirchhoff migration for UWB MIMO array-based radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2692-2703. 被引量:1
  • 6OGIWARA S and YAMAKOSHI Y. MIMO radar system for respiratory monitoring using Tx and Rx modulation with M-sequence codes[J]. IEICE Transactions on Communications, 2010, 93(9): 2416-2423. 被引量:1
  • 7BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Boston, MA, USA, 2007: 128-133. 被引量:1
  • 8杨杰,廖桂生,李军,党博,刘长赞.基于波形选择的MIMO雷达三维稀疏成像与角度误差校正方法[J].电子与信息学报,2014,36(2):428-434. 被引量:5
  • 9丁丽..MIMO雷达稀疏成像的失配问题研究[D].中国科学技术大学,2014:
  • 10WILLIAM R, PETRE S, LI J, et al. Iterative adaptive approaches to MIMO radar imaing[J]. IEEE Journal of Selected Thopics in Signal Processing, 2010, 4(1): 5-20. 被引量:1

二级参考文献87

  • 1王定成,苏淳.B值独立同分布随机变元序列的矩完全收敛性[J].应用数学学报,2004,27(3):440-448. 被引量:30
  • 2冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22
  • 3Candes E. Compressive Sampling [C]//Proceedings of International Congress of Mathematicians: Vol 3. Madrid: European Mathematical Society Publishing House, 2006: 1433-1452. 被引量:1
  • 4Donoho D L. Compressed Sensing [J]. IEEE Trans on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 5Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 6Kim S J, Koh K, Lustig M, et al. An Interior-point Method for Large-scale l1 Regularized Least Squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) : 606-617. 被引量:1
  • 7Mario A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and other Inverse Problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) : 586-597. 被引量:1
  • 8Mallat S, Zhang Z. Matching Pursuits with Time-frequency Dictionaries [J]. IEEE Trans Signal Process, 1993, 41 (12) : 3397-3415. 被引量:1
  • 9Tropp J, Gilbert A. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit[J]. IEEE Trans on Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 10Donoho D L, Tsaig Y, Drori I, et al. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit[R/OL]. [2006-07-05]. http://www, dsp. ece. rice. edu/cs. 被引量:1

共引文献42

同被引文献25

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部