期刊文献+

基于分段可调节OMP算法的图像压缩感知算法 被引量:2

An Image Compressed Sensing Algorithm Based on Novel Stagewise Regulation OMP Algorithm
下载PDF
导出
摘要 压缩感知(CS)理论作用在稀疏信号或可压缩信号,用很小的采样速率,保证信号采样与压缩同时进行,并可以精确恢复原始信号。文中侧重CS重构算法中经典的贪婪算法研究,介绍了四种经典的贪婪算法:正交匹配(OMP)算法、正则化正交匹配(ROMP)算法、压缩采样匹配追踪(Co Sa MP)算法和分段正交匹配追踪(St OMP)算法。从重构精度和重构耗时两个方面,结合横向和纵向详细的比较,详尽地给出了不同算法的区别以及优缺点。在St OMP算法增加考虑稀疏度和观测矩阵行列关系的可调节因子,提出了一种改进算法—分段可调节OMP重构(Str OMP)算法。通过仿真实验发现,提出的改进算法既提高了图像重构精度,又保证了其重构时间短的优越性。 Compressed Sensing (CS) theory uses small frequency, which is mainly for sparse or compressible signal. Sampling and compressing are also implemented successfully at the same time, and can accurately recover the original signal. It focuses on the classical greedy algodthm in this paper for compressed sensing reconstruction algorithm, including four classical matching pursuit algorithms like Orthogonal Matching Pursuit (OMP) ,the Regularized Orthogonal Matching Pursuit (ROMP) ,Compressive Sampling Matching Pursuit (CoSaMP) and Staguwise Orthogonal Matching Pursuit (STOMP). Considering the reconstruction accuracy and time as evaluation stand- ards, the advantages and disadvantages of algorithms and difference of them are given by combining with horizontal and vertical comparison. The adjustment factor for STOMP at each iteration is put considering the sparsity and the observation matrix ranks,and an improved algorithm is proposed, which makes innovations for StrOMP algorithm, named Stagewise regulation Orthogonal Matching Pursuit ( StrOMP). The simulation shows the proposed algorithm can raise the accuracy of image reconstruction, and guarantee the priority of the reconstruction time of the new algorithm.
作者 石曼曼 李雷
出处 《计算机技术与发展》 2016年第11期14-18,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61501251) 南京邮电大学引进人才科研启动基金资助项目(NY214191)
关键词 压缩感知 贪婪算法 图像重构 分段可调节正交匹配追踪算法 compressed sensing greedy algorithm image reconstruction stagewise regulation orthogonal matching pursuit reconstruction algorithm
  • 相关文献

参考文献15

  • 1Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52 ( 4 ) : 1289-1306. 被引量:1
  • 2Candes E J, Romberg J, Tao T. Robust undertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006,52(2) :489-509. 被引量:1
  • 3Tropp J A, Gilbert A C. Signal recovery from random measure- ments via orthogonal matching pursuit [ J ]. IEEE Transactionson Information Theory ,2007,53 (12) :4655-4666. 被引量:1
  • 4Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via ROMP[ J ]. IEEE Journal of Se- lected Topics in Signal Processing,2010,4 (2) :310-316. 被引量:1
  • 5Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied & Computa- tional Harmonic Analysis,2008,26(3) :301-321. 被引量:1
  • 6Donoho D L,Tsaig Y,Drori I,et al. Sparae solution of under- determined systems of linear equations by stagnwiso orthognnal matching pursuit[ J ]. IEEE Transactions on Information Theo- ry,2012,58(2) :1094-1121. 被引量:1
  • 7杨真真..压缩感知重构技术及其在图像融合中的应用研究[D].南京邮电大学,2014:
  • 8Candes E J,Wakin M B. An introduction to compressive sam- piing[ J ]. IEEE Signal Processing Magazine, 2008,25 (2) : 21 -30. 被引量:1
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 10高睿,赵瑞珍,胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报,2010,30(6):1639-1644. 被引量:48

二级参考文献101

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献754

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部